Interpretable Classifier Models for Decision Support Using High Utility Gain Patterns
Ensemble models such as gradient boosting and random forests are proven to offer the best predictive performance on a wide variety of supervised learning problems. The high performance of these black box models, however, comes at a cost of model interpretability. They are also inadequate to meet reg...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10669017/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|