Multi-scale hydraulic graph neural networks for flood modelling
<p>Deep-learning-based surrogate models represent a powerful alternative to numerical models for speeding up flood mapping while preserving accuracy. In particular, solutions based on hydraulic-based graph neural networks (SWE-GNNs) enable transferability to domains not used for training and a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2025-01-01
|
Series: | Natural Hazards and Earth System Sciences |
Online Access: | https://nhess.copernicus.org/articles/25/335/2025/nhess-25-335-2025.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|