Dual Inhibition of CDK4/6 and CDK7 Suppresses Triple‐Negative Breast Cancer Progression via Epigenetic Modulation of SREBP1‐Regulated Cholesterol Metabolism

Abstract Inhibitors targeting cyclin‐dependent kinases 4 and 6 (CDK4/6) to block cell cycle progression have been effective in treating hormone receptor‐positive breast cancer, but triple‐negative breast cancer (TNBC) remains largely resistant, limiting their clinical applicability. The study reveal...

Full description

Saved in:
Bibliographic Details
Main Authors: Yilan Yang, Jiatao Liao, Zhe Pan, Jin Meng, Li Zhang, Wei Shi, Xiaofang Wang, Xiaomeng Zhang, Zhirui Zhou, Jurui Luo, Xingxing Chen, Zhaozhi Yang, Xin Mei, Jinli Ma, Zhen Zhang, Yi‐Zhou Jiang, Zhi‐Min Shao, Fei Xavier Chen, Xiaoli Yu, Xiaomao Guo
Format: Article
Language:English
Published: Wiley 2025-02-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202413103
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Inhibitors targeting cyclin‐dependent kinases 4 and 6 (CDK4/6) to block cell cycle progression have been effective in treating hormone receptor‐positive breast cancer, but triple‐negative breast cancer (TNBC) remains largely resistant, limiting their clinical applicability. The study reveals that transcription regulator cyclin‐dependent kinase7 (CDK7) is a promising target to circumvent TNBC's inherent resistance to CDK4/6 inhibitors. Combining CDK4/6 and CDK7 inhibitors significantly enhances therapeutic effectiveness, leading to a marked decrease in cholesterol biosynthesis within cells. This effect is achieved through reduced activity of the transcription factor forkhead box M1 (FOXM1), which normally increases cholesterol production by inducing SREBF1 expression. Furthermore, this dual inhibition strategy attenuates the recruitment of sterol regulatory element binding transcription factor 1 (SREBP1) and p300 to genes essential for cholesterol synthesis, thus hindering tumor growth. This research is corroborated by an in‐house cohort showing lower survival rates in TNBC patients with higher cholesterol production gene activity. This suggests a new treatment approach for TNBC by simultaneously targeting CDK4/6 and CDK7, warranting additional clinical trials.
ISSN:2198-3844