Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions

<p>In order to reduce the uncertainty of aerosol radiative forcing in global climate models, we need to better understand natural aerosol sources which are important to constrain the current and pre-industrial climate. Here, we analyse particle number size distributions (PNSDs) collected durin...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Brean, D. C. S. Beddows, E. Asmi, A. Virkkula, L. L. J. Quéléver, M. Sipilä, F. Van Den Heuvel, T. Lachlan-Cope, A. Jones, M. Frey, A. Lupi, J. Park, Y. J. Yoon, R. Weller, G. L. Marincovich, G. C. Mulena, R. M. Harrison, M. Dall'Osto
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832583394658091008
author J. Brean
D. C. S. Beddows
E. Asmi
A. Virkkula
A. Virkkula
L. L. J. Quéléver
M. Sipilä
F. Van Den Heuvel
T. Lachlan-Cope
A. Jones
M. Frey
A. Lupi
J. Park
Y. J. Yoon
R. Weller
G. L. Marincovich
G. L. Marincovich
G. C. Mulena
G. C. Mulena
R. M. Harrison
R. M. Harrison
M. Dall'Osto
author_facet J. Brean
D. C. S. Beddows
E. Asmi
A. Virkkula
A. Virkkula
L. L. J. Quéléver
M. Sipilä
F. Van Den Heuvel
T. Lachlan-Cope
A. Jones
M. Frey
A. Lupi
J. Park
Y. J. Yoon
R. Weller
G. L. Marincovich
G. L. Marincovich
G. C. Mulena
G. C. Mulena
R. M. Harrison
R. M. Harrison
M. Dall'Osto
author_sort J. Brean
collection DOAJ
description <p>In order to reduce the uncertainty of aerosol radiative forcing in global climate models, we need to better understand natural aerosol sources which are important to constrain the current and pre-industrial climate. Here, we analyse particle number size distributions (PNSDs) collected during a year (2015) across four coastal and inland Antarctic research bases (Halley, Marambio, Dome C and King Sejong). We utilise <span class="inline-formula"><i>k</i></span>-means cluster analysis to separate the PNSD data into six main categories. “Nucleation” and “bursting” PNSDs occur 28 %–48 % of the time between sites, most commonly at the coastal sites of Marambio and King Sejong where air masses mostly come from the west and travel over extensive regions of sea ice, marginal ice and open ocean and likely arise from new particle formation. “Aitken high”, “Aitken low” and “bimodal” PNSDs occur 37 %–68 % of the time, most commonly at Dome C on the Antarctic Plateau, and likely arise from atmospheric transport and ageing from aerosol originating likely in both the coastal boundary layer and free troposphere. “Pristine” PNSDs with low aerosol concentrations occur 12 %–45 % of the time, most commonly at Halley, located at low altitudes and far from the coastal melting ice and influenced by air masses from the west. Not only the sea spray primary aerosols and gas to particle secondary aerosol sources, but also the different air masses impacting the research stations should be kept in mind when deliberating upon different aerosol precursor sources across research stations. We infer that both primary and secondary components from pelagic and sympagic regions strongly contribute to the annual seasonal cycle of Antarctic aerosols. Our simultaneous aerosol measurements stress the importance of the variation in atmospheric biogeochemistry across the Antarctic region.</p>
format Article
id doaj-art-27ce7d0c26a543d49434c17debf184f5
institution Kabale University
issn 1680-7316
1680-7324
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-27ce7d0c26a543d49434c17debf184f52025-01-28T14:44:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-01-01251145116210.5194/acp-25-1145-2025Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributionsJ. Brean0D. C. S. Beddows1E. Asmi2A. Virkkula3A. Virkkula4L. L. J. Quéléver5M. Sipilä6F. Van Den Heuvel7T. Lachlan-Cope8A. Jones9M. Frey10A. Lupi11J. Park12Y. J. Yoon13R. Weller14G. L. Marincovich15G. L. Marincovich16G. C. Mulena17G. C. Mulena18R. M. Harrison19R. M. Harrison20M. Dall'Osto21School of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston Rd, Birmingham, B15 2TT, United KingdomSchool of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston Rd, Birmingham, B15 2TT, United KingdomFinnish Meteorological Institute, 00101 Helsinki, FinlandFinnish Meteorological Institute, 00101 Helsinki, FinlandInstitute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki, FinlandInstitute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki, FinlandInstitute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki, FinlandBritish Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge, CB3 0ET, United KingdomBritish Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge, CB3 0ET, United KingdomBritish Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge, CB3 0ET, United KingdomBritish Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge, CB3 0ET, United KingdomInstitute of Polar Science (IPS), National Research Council (CNR), Venice, ItalyKorea Polar Research Institute, 26, SongdoMirae-ro, Yeonsu-Gu, Incheon, 406-840, KoreaKorea Polar Research Institute, 26, SongdoMirae-ro, Yeonsu-Gu, Incheon, 406-840, KoreaAlfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, GermanyServicio Meteorológico Nacional (SMN), Av. Dorrego 4019, Buenos Aires, ArgentinaConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, ArgentinaServicio Meteorológico Nacional (SMN), Av. Dorrego 4019, Buenos Aires, ArgentinaConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, ArgentinaSchool of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston Rd, Birmingham, B15 2TT, United KingdomDepartment of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi ArabiaInstitute of Marine Sciences, CSIC, 08003, Barcelona, Spain<p>In order to reduce the uncertainty of aerosol radiative forcing in global climate models, we need to better understand natural aerosol sources which are important to constrain the current and pre-industrial climate. Here, we analyse particle number size distributions (PNSDs) collected during a year (2015) across four coastal and inland Antarctic research bases (Halley, Marambio, Dome C and King Sejong). We utilise <span class="inline-formula"><i>k</i></span>-means cluster analysis to separate the PNSD data into six main categories. “Nucleation” and “bursting” PNSDs occur 28 %–48 % of the time between sites, most commonly at the coastal sites of Marambio and King Sejong where air masses mostly come from the west and travel over extensive regions of sea ice, marginal ice and open ocean and likely arise from new particle formation. “Aitken high”, “Aitken low” and “bimodal” PNSDs occur 37 %–68 % of the time, most commonly at Dome C on the Antarctic Plateau, and likely arise from atmospheric transport and ageing from aerosol originating likely in both the coastal boundary layer and free troposphere. “Pristine” PNSDs with low aerosol concentrations occur 12 %–45 % of the time, most commonly at Halley, located at low altitudes and far from the coastal melting ice and influenced by air masses from the west. Not only the sea spray primary aerosols and gas to particle secondary aerosol sources, but also the different air masses impacting the research stations should be kept in mind when deliberating upon different aerosol precursor sources across research stations. We infer that both primary and secondary components from pelagic and sympagic regions strongly contribute to the annual seasonal cycle of Antarctic aerosols. Our simultaneous aerosol measurements stress the importance of the variation in atmospheric biogeochemistry across the Antarctic region.</p>https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025.pdf
spellingShingle J. Brean
D. C. S. Beddows
E. Asmi
A. Virkkula
A. Virkkula
L. L. J. Quéléver
M. Sipilä
F. Van Den Heuvel
T. Lachlan-Cope
A. Jones
M. Frey
A. Lupi
J. Park
Y. J. Yoon
R. Weller
G. L. Marincovich
G. L. Marincovich
G. C. Mulena
G. C. Mulena
R. M. Harrison
R. M. Harrison
M. Dall'Osto
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Atmospheric Chemistry and Physics
title Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
title_full Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
title_fullStr Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
title_full_unstemmed Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
title_short Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
title_sort multiple eco regions contribute to the seasonal cycle of antarctic aerosol size distributions
url https://acp.copernicus.org/articles/25/1145/2025/acp-25-1145-2025.pdf
work_keys_str_mv AT jbrean multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT dcsbeddows multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT easmi multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT avirkkula multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT avirkkula multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT lljquelever multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT msipila multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT fvandenheuvel multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT tlachlancope multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT ajones multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT mfrey multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT alupi multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT jpark multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT yjyoon multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT rweller multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT glmarincovich multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT glmarincovich multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT gcmulena multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT gcmulena multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT rmharrison multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT rmharrison multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions
AT mdallosto multipleecoregionscontributetotheseasonalcycleofantarcticaerosolsizedistributions