Comparative Study of Genetic Algorithms and Particle Swarm Optimization for Flexible Power Point Tracking in Photovoltaic Systems under Partial Shading
This study conducts a comparative analysis of Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) for Flexible Power Point Tracking (FPPT) in photovoltaic (PV) systems. The GA-based FPPT algorithm exhibits superior performance in power output, tracking accuracy, and convergence speed compa...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2025-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2025/01/e3sconf_icegc2024_00058.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study conducts a comparative analysis of Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) for Flexible Power Point Tracking (FPPT) in photovoltaic (PV) systems. The GA-based FPPT algorithm exhibits superior performance in power output, tracking accuracy, and convergence speed compared to conventional methods. In contrast, the PSO-based FPPT algorithm is designed to mitigate oscillations around steady-state operating points under partial shading conditions (PSC) by incorporating power limitation control. This allows the FPPT-PSO algorithm to effectively track the global maximum power point (GMPP) without fluctuating around steady-state points. The findings of this comparative analysis highlight the significance of adaptive FPPT algorithms in enhancing system reliability and maximizing power extraction under dynamic environmental conditions. The GA-based approach excels in optimizing power generation metrics, while the PSO-based approach specializes in maintaining stability and precision under challenging operational scenarios such as partial shading. By exploring the strengths and limitations of each algorithm, this study provides valuable in-sights into the selection and implementation of FPPT strategies in PV systems. |
---|---|
ISSN: | 2267-1242 |