Annihilators of nilpotent elements
Let x be a nilpotent element of an infinite ring R (not necessarily with 1). We prove that A(x)—the two-sided annihilator of x—has a large intersection with any infinite ideal I of R in the sense that card(A(x)∩I)=cardI. In particular, cardA(x)=cardR; and this is applied to prove that if N is the se...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2005-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS.2005.3517 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|