Basins of Attraction for Two-Species Competitive Model with Quadratic Terms and the Singular Allee Effect

We consider the following system of difference equations: xn+1=xn2/B1xn2+C1yn2, yn+1=yn2/A2+B2xn2+C2yn2,  n=0, 1, …,   where B1, C1, A2, B2, C2 are positive constants and x0, y0≥0 are initial conditions. This system has interesting dynamics and it can have up to seven equilibrium points as well as a...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Brett, M. R. S. Kulenović
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2015/847360
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the following system of difference equations: xn+1=xn2/B1xn2+C1yn2, yn+1=yn2/A2+B2xn2+C2yn2,  n=0, 1, …,   where B1, C1, A2, B2, C2 are positive constants and x0, y0≥0 are initial conditions. This system has interesting dynamics and it can have up to seven equilibrium points as well as a singular point at (0,0), which always possesses a basin of attraction. We characterize the basins of attractions of all equilibrium points as well as the singular point at (0,0) and thus describe the global dynamics of this system. Since the singular point at (0,0) always possesses a basin of attraction this system exhibits Allee’s effect.
ISSN:1026-0226
1607-887X