Optimizing the Prediction Accuracy of Friction Capacity of Driven Piles in Cohesive Soil Using a Novel Self-Tuning Least Squares Support Vector Machine
This research presents a novel hybrid prediction technique, namely, self-tuning least squares support vector machine (ST-LSSVM), to accurately model the friction capacity of driven piles in cohesive soil. The hybrid approach uses LS-SVM as a supervised-learning-based predictor to build an accurate i...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/6490169 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|