An End-To-End Speech Recognition Model for the North Shaanxi Dialect: Design and Evaluation

The coal mining industry in Northern Shaanxi is robust, with a prevalent use of the local dialect, known as “Shapu”, characterized by a distinct Northern Shaanxi accent. This study addresses the practical need for speech recognition in this dialect. We propose an end-to-end speech recognition model...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi Qin, Feifan Yu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/341
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The coal mining industry in Northern Shaanxi is robust, with a prevalent use of the local dialect, known as “Shapu”, characterized by a distinct Northern Shaanxi accent. This study addresses the practical need for speech recognition in this dialect. We propose an end-to-end speech recognition model for the North Shaanxi dialect, leveraging the Conformer architecture. To tailor the model to the coal mining context, we developed a specialized corpus reflecting the phonetic characteristics of the dialect and its usage in the industry. We investigated feature extraction techniques suitable for the North Shaanxi dialect, focusing on the unique pronunciation of initial consonants and vowels. A preprocessing module was designed to accommodate the dialect’s rapid speech tempo and polyphonic nature, enhancing recognition performance. To enhance the decoder’s text generation capability, we replaced the Conformer decoder with a Transformer architecture. Additionally, to mitigate the computational demands of the model, we incorporated Connectionist Temporal Classification (CTC) joint training for optimization. The experimental results on our self-established voice dataset for the Northern Shaanxi coal mining industry demonstrate that the proposed Conformer–Transformer–CTC model achieves a 9.2% and 10.3% reduction in the word error rate compared to the standalone Conformer and Transformer models, respectively, confirming the advancement of our method. The next step will involve researching how to improve the performance of dialect speech recognition by integrating external language models and extracting pronunciation features of different dialects, thereby achieving better recognition results.
ISSN:1424-8220