A Weighted Voting Classifier Based on Differential Evolution

Ensemble learning is to employ multiple individual classifiers and combine their predictions, which could achieve better performance than a single classifier. Considering that different base classifier gives different contribution to the final classification result, this paper assigns greater weight...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Zhang, Hongrui Zhang, Jing Cai, Binbin Yang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/376950
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ensemble learning is to employ multiple individual classifiers and combine their predictions, which could achieve better performance than a single classifier. Considering that different base classifier gives different contribution to the final classification result, this paper assigns greater weights to the classifiers with better performance and proposes a weighted voting approach based on differential evolution. After optimizing the weights of the base classifiers by differential evolution, the proposed method combines the results of each classifier according to the weighted voting combination rule. Experimental results show that the proposed method not only improves the classification accuracy, but also has a strong generalization ability and universality.
ISSN:1085-3375
1687-0409