Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index

<b>Background</b>: Oral diseases such as caries, gingivitis, and periodontitis are highly prevalent worldwide and often arise from plaque. This study focuses on detecting three plaque stages—new, mature, and over-mature—using state-of-the-art YOLO architectures to enhance early intervent...

Full description

Saved in:
Bibliographic Details
Main Authors: Alfonso Ramírez-Pedraza, Sebastián Salazar-Colores, Crystel Cardenas-Valle, Juan Terven, José-Joel González-Barbosa, Francisco-Javier Ornelas-Rodriguez, Juan-Bautista Hurtado-Ramos, Raymundo Ramirez-Pedraza, Diana-Margarita Córdova-Esparza, Julio-Alejandro Romero-González
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/15/2/231
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588678724059136
author Alfonso Ramírez-Pedraza
Sebastián Salazar-Colores
Crystel Cardenas-Valle
Juan Terven
José-Joel González-Barbosa
Francisco-Javier Ornelas-Rodriguez
Juan-Bautista Hurtado-Ramos
Raymundo Ramirez-Pedraza
Diana-Margarita Córdova-Esparza
Julio-Alejandro Romero-González
author_facet Alfonso Ramírez-Pedraza
Sebastián Salazar-Colores
Crystel Cardenas-Valle
Juan Terven
José-Joel González-Barbosa
Francisco-Javier Ornelas-Rodriguez
Juan-Bautista Hurtado-Ramos
Raymundo Ramirez-Pedraza
Diana-Margarita Córdova-Esparza
Julio-Alejandro Romero-González
author_sort Alfonso Ramírez-Pedraza
collection DOAJ
description <b>Background</b>: Oral diseases such as caries, gingivitis, and periodontitis are highly prevalent worldwide and often arise from plaque. This study focuses on detecting three plaque stages—new, mature, and over-mature—using state-of-the-art YOLO architectures to enhance early intervention and reduce reliance on manual visual assessments. <b>Methods</b>: We compiled a dataset of 531 RGB images from 177 individuals, captured via multiple mobile devices. Each sample was treated with disclosing gel to highlight plaque types, then preprocessed for lighting and color normalization. YOLOv9, YOLOv10, and YOLOv11, in various scales, were trained to detect plaque categories, and their performance was evaluated using precision, recall, and mean Average Precision (mAP@50). <b>Results</b>: Among the tested models, YOLOv11m achieved the highest mAP@50 (0.713), displaying superior detection of over-mature plaque. Across all YOLO variants, older plaque was generally easier to detect than newer plaque, which can blend with gingival tissue. Applying the O’Leary index indicated that over half of the study population exhibited severe plaque levels. <b>Conclusions</b>: Our findings demonstrate the feasibility of automated plaque detection with advanced YOLO models in varied imaging conditions. This approach offers potential to optimize clinical workflows, support early diagnoses, and mitigate oral health burdens in low-resource communities.
format Article
id doaj-art-22f8c8be31f84413af9333e42d1841fb
institution Kabale University
issn 2075-4418
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj-art-22f8c8be31f84413af9333e42d1841fb2025-01-24T13:29:12ZengMDPI AGDiagnostics2075-44182025-01-0115223110.3390/diagnostics15020231Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary IndexAlfonso Ramírez-Pedraza0Sebastián Salazar-Colores1Crystel Cardenas-Valle2Juan Terven3José-Joel González-Barbosa4Francisco-Javier Ornelas-Rodriguez5Juan-Bautista Hurtado-Ramos6Raymundo Ramirez-Pedraza7Diana-Margarita Córdova-Esparza8Julio-Alejandro Romero-González9Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, MexicoIA, Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, León 37150, MexicoClinica Lurviva, I. Allende, Apaseo el Grande 38160, MexicoCentro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, MexicoCentro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, MexicoCentro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, MexicoCentro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, MexicoFacultad de Contaduria y Administración, Universidad Autónoma de Querétaro, Querétaro 76017, MexicoFacultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, MexicoFacultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico<b>Background</b>: Oral diseases such as caries, gingivitis, and periodontitis are highly prevalent worldwide and often arise from plaque. This study focuses on detecting three plaque stages—new, mature, and over-mature—using state-of-the-art YOLO architectures to enhance early intervention and reduce reliance on manual visual assessments. <b>Methods</b>: We compiled a dataset of 531 RGB images from 177 individuals, captured via multiple mobile devices. Each sample was treated with disclosing gel to highlight plaque types, then preprocessed for lighting and color normalization. YOLOv9, YOLOv10, and YOLOv11, in various scales, were trained to detect plaque categories, and their performance was evaluated using precision, recall, and mean Average Precision (mAP@50). <b>Results</b>: Among the tested models, YOLOv11m achieved the highest mAP@50 (0.713), displaying superior detection of over-mature plaque. Across all YOLO variants, older plaque was generally easier to detect than newer plaque, which can blend with gingival tissue. Applying the O’Leary index indicated that over half of the study population exhibited severe plaque levels. <b>Conclusions</b>: Our findings demonstrate the feasibility of automated plaque detection with advanced YOLO models in varied imaging conditions. This approach offers potential to optimize clinical workflows, support early diagnoses, and mitigate oral health burdens in low-resource communities.https://www.mdpi.com/2075-4418/15/2/231deep learningmodelplaquedentobacteriaO’Leary index
spellingShingle Alfonso Ramírez-Pedraza
Sebastián Salazar-Colores
Crystel Cardenas-Valle
Juan Terven
José-Joel González-Barbosa
Francisco-Javier Ornelas-Rodriguez
Juan-Bautista Hurtado-Ramos
Raymundo Ramirez-Pedraza
Diana-Margarita Córdova-Esparza
Julio-Alejandro Romero-González
Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index
Diagnostics
deep learning
model
plaque
dentobacteria
O’Leary index
title Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index
title_full Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index
title_fullStr Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index
title_full_unstemmed Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index
title_short Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O’Leary Index
title_sort deep learning in oral hygiene automated dental plaque detection via yolo frameworks and quantification using the o leary index
topic deep learning
model
plaque
dentobacteria
O’Leary index
url https://www.mdpi.com/2075-4418/15/2/231
work_keys_str_mv AT alfonsoramirezpedraza deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT sebastiansalazarcolores deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT crystelcardenasvalle deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT juanterven deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT josejoelgonzalezbarbosa deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT franciscojavierornelasrodriguez deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT juanbautistahurtadoramos deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT raymundoramirezpedraza deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT dianamargaritacordovaesparza deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex
AT julioalejandroromerogonzalez deeplearninginoralhygieneautomateddentalplaquedetectionviayoloframeworksandquantificationusingtheolearyindex