A scalable solar-driven photocatalytic system for separated H2 and O2 production from water
Abstract Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced h...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-56314-x |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe2-loaded CH(NH2)2PbBr3-xIx) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO4 photocatalysts. These components are bridged by a I3 −/I− redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.47 ± 0.03%. Additionally, an outdoor scaled-up setup of 692.5 cm2 achieves an average solar-to-hydrogen conversion efficiency of 1.21% during a week-long test under natural sunlight. By addressing major limitations inherent in conventional photocatalytic systems, such as the cooccurrence of hydrogen and oxygen in a single cell and the resultant severe reverse reactions from hydrogen and oxygen recombination, this work introduces an alternative concept for photocatalytic system design, which enhances both efficiency and practicality. |
---|---|
ISSN: | 2041-1723 |