On locally conformal Kähler space forms

An m-dimensional locally conformal Kähler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed l-form αλ (called the Lee form) whose structure (Fμλ,gμλ) satisfies ∇νFμλ=−βμgνλ+βλgνμ−αμFνλ+αλFνμ, where ∇λ denotes the covariant differentiation with respect to th...

Full description

Saved in:
Bibliographic Details
Main Author: Koji Matsumoto
Format: Article
Language:English
Published: Wiley 1985-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171285000060
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558638864007168
author Koji Matsumoto
author_facet Koji Matsumoto
author_sort Koji Matsumoto
collection DOAJ
description An m-dimensional locally conformal Kähler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed l-form αλ (called the Lee form) whose structure (Fμλ,gμλ) satisfies ∇νFμλ=−βμgνλ+βλgνμ−αμFνλ+αλFνμ, where ∇λ denotes the covariant differentiation with respect to the Hermitian metric gμλ, βλ=−Fλϵαϵ, Fμλ=Fμϵgϵλ and the indices ν,μ,…,λ run over the range 1,2,…,m.
format Article
id doaj-art-20a392c256554c57a05c91c8d6bd6cd0
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1985-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-20a392c256554c57a05c91c8d6bd6cd02025-02-03T01:31:51ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251985-01-0181697410.1155/S0161171285000060On locally conformal Kähler space formsKoji Matsumoto0Department of Mathematics, Faculty of Education, Yamagata University, Yamagata 990, JapanAn m-dimensional locally conformal Kähler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed l-form αλ (called the Lee form) whose structure (Fμλ,gμλ) satisfies ∇νFμλ=−βμgνλ+βλgνμ−αμFνλ+αλFνμ, where ∇λ denotes the covariant differentiation with respect to the Hermitian metric gμλ, βλ=−Fλϵαϵ, Fμλ=Fμϵgϵλ and the indices ν,μ,…,λ run over the range 1,2,…,m.http://dx.doi.org/10.1155/S0161171285000060l. c. K-manifoldsLee forml. c. K-space formshybridrecurrent l. c. K-space form.
spellingShingle Koji Matsumoto
On locally conformal Kähler space forms
International Journal of Mathematics and Mathematical Sciences
l. c. K-manifolds
Lee form
l. c. K-space forms
hybrid
recurrent l. c. K-space form.
title On locally conformal Kähler space forms
title_full On locally conformal Kähler space forms
title_fullStr On locally conformal Kähler space forms
title_full_unstemmed On locally conformal Kähler space forms
title_short On locally conformal Kähler space forms
title_sort on locally conformal kahler space forms
topic l. c. K-manifolds
Lee form
l. c. K-space forms
hybrid
recurrent l. c. K-space form.
url http://dx.doi.org/10.1155/S0161171285000060
work_keys_str_mv AT kojimatsumoto onlocallyconformalkahlerspaceforms