On locally conformal Kähler space forms
An m-dimensional locally conformal Kähler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed l-form αλ (called the Lee form) whose structure (Fμλ,gμλ) satisfies ∇νFμλ=−βμgνλ+βλgνμ−αμFνλ+αλFνμ, where ∇λ denotes the covariant differentiation with respect to th...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1985-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171285000060 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558638864007168 |
---|---|
author | Koji Matsumoto |
author_facet | Koji Matsumoto |
author_sort | Koji Matsumoto |
collection | DOAJ |
description | An m-dimensional locally conformal Kähler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed l-form αλ (called the Lee form) whose structure (Fμλ,gμλ) satisfies ∇νFμλ=−βμgνλ+βλgνμ−αμFνλ+αλFνμ,
where ∇λ denotes the covariant differentiation with respect to the Hermitian metric gμλ, βλ=−Fλϵαϵ, Fμλ=Fμϵgϵλ and the indices ν,μ,…,λ run over the range 1,2,…,m. |
format | Article |
id | doaj-art-20a392c256554c57a05c91c8d6bd6cd0 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1985-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-20a392c256554c57a05c91c8d6bd6cd02025-02-03T01:31:51ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251985-01-0181697410.1155/S0161171285000060On locally conformal Kähler space formsKoji Matsumoto0Department of Mathematics, Faculty of Education, Yamagata University, Yamagata 990, JapanAn m-dimensional locally conformal Kähler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed l-form αλ (called the Lee form) whose structure (Fμλ,gμλ) satisfies ∇νFμλ=−βμgνλ+βλgνμ−αμFνλ+αλFνμ, where ∇λ denotes the covariant differentiation with respect to the Hermitian metric gμλ, βλ=−Fλϵαϵ, Fμλ=Fμϵgϵλ and the indices ν,μ,…,λ run over the range 1,2,…,m.http://dx.doi.org/10.1155/S0161171285000060l. c. K-manifoldsLee forml. c. K-space formshybridrecurrent l. c. K-space form. |
spellingShingle | Koji Matsumoto On locally conformal Kähler space forms International Journal of Mathematics and Mathematical Sciences l. c. K-manifolds Lee form l. c. K-space forms hybrid recurrent l. c. K-space form. |
title | On locally conformal Kähler space forms |
title_full | On locally conformal Kähler space forms |
title_fullStr | On locally conformal Kähler space forms |
title_full_unstemmed | On locally conformal Kähler space forms |
title_short | On locally conformal Kähler space forms |
title_sort | on locally conformal kahler space forms |
topic | l. c. K-manifolds Lee form l. c. K-space forms hybrid recurrent l. c. K-space form. |
url | http://dx.doi.org/10.1155/S0161171285000060 |
work_keys_str_mv | AT kojimatsumoto onlocallyconformalkahlerspaceforms |