Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn Leaves
Pseudomonas aeruginosa is one of the main causes of nosocomial infections and is frequently associated with opportunistic infections among hospitalized patients. Kaempferol-3-O-(2′,6′-di-O-trans-p-coumaroyl)-β-D glucopyranoside (KF) is an antipseudomonal compound isolated from the leaves of the nati...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | International Journal of Microbiology |
Online Access: | http://dx.doi.org/10.1155/2020/6915483 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832568551501725696 |
---|---|
author | Mourouge Saadi Alwash Wan Syaidatul Aqma Wan Yaacob Ahmad Nazlina Ibrahim |
author_facet | Mourouge Saadi Alwash Wan Syaidatul Aqma Wan Yaacob Ahmad Nazlina Ibrahim |
author_sort | Mourouge Saadi Alwash |
collection | DOAJ |
description | Pseudomonas aeruginosa is one of the main causes of nosocomial infections and is frequently associated with opportunistic infections among hospitalized patients. Kaempferol-3-O-(2′,6′-di-O-trans-p-coumaroyl)-β-D glucopyranoside (KF) is an antipseudomonal compound isolated from the leaves of the native medicinal plant Melastoma malabathricum. Herein, an RNA-seq transcriptomic approach was employed to study the effect of KF treatment on P. aeruginosa and to elucidate the molecular mechanisms underlying the response to KF at two time points (6 h and 24 h incubation). Quantitative real-time PCR (qRT-PCR) was performed for four genes (uvrD, sodM, fumC1, and rpsL) to assess the reliability of the RNA-seq results. The RNA-seq transcriptomic analysis revealed that KF increases the expression of genes involved in the electron transport chain (NADH-I), resulting in the induction of ATP synthesis. Furthermore, KF also increased the expression of genes associated with ATP-binding cassette transporters, flagella, type III secretion system proteins, and DNA replication and repair, which may further influence nutrient uptake, motility, and growth. The results also revealed that KF decreased the expression of a broad range of virulence factors associated with LPS biosynthesis, iron homeostasis, cytotoxic pigment pyocyanin production, and motility and adhesion that are representative of an acute P. aeruginosa infection profile. In addition, P. aeruginosa pathways for amino acid synthesis and membrane lipid composition were modified to adapt to KF treatment. Overall, the present research provides a detailed view of P. aeruginosa adaptation and behaviour in response to KF and highlights the possible therapeutic approach of using plants to combat P. aeruginosa infections. |
format | Article |
id | doaj-art-1ed852a650f747378a65e933e6b94ef2 |
institution | Kabale University |
issn | 1687-918X 1687-9198 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Microbiology |
spelling | doaj-art-1ed852a650f747378a65e933e6b94ef22025-02-03T00:58:48ZengWileyInternational Journal of Microbiology1687-918X1687-91982020-01-01202010.1155/2020/69154836915483Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn LeavesMourouge Saadi Alwash0Wan Syaidatul Aqma1Wan Yaacob Ahmad2Nazlina Ibrahim3Department of Biology, College of Science, University of Babylon, Hillah, IraqSchool of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaSchool of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaPseudomonas aeruginosa is one of the main causes of nosocomial infections and is frequently associated with opportunistic infections among hospitalized patients. Kaempferol-3-O-(2′,6′-di-O-trans-p-coumaroyl)-β-D glucopyranoside (KF) is an antipseudomonal compound isolated from the leaves of the native medicinal plant Melastoma malabathricum. Herein, an RNA-seq transcriptomic approach was employed to study the effect of KF treatment on P. aeruginosa and to elucidate the molecular mechanisms underlying the response to KF at two time points (6 h and 24 h incubation). Quantitative real-time PCR (qRT-PCR) was performed for four genes (uvrD, sodM, fumC1, and rpsL) to assess the reliability of the RNA-seq results. The RNA-seq transcriptomic analysis revealed that KF increases the expression of genes involved in the electron transport chain (NADH-I), resulting in the induction of ATP synthesis. Furthermore, KF also increased the expression of genes associated with ATP-binding cassette transporters, flagella, type III secretion system proteins, and DNA replication and repair, which may further influence nutrient uptake, motility, and growth. The results also revealed that KF decreased the expression of a broad range of virulence factors associated with LPS biosynthesis, iron homeostasis, cytotoxic pigment pyocyanin production, and motility and adhesion that are representative of an acute P. aeruginosa infection profile. In addition, P. aeruginosa pathways for amino acid synthesis and membrane lipid composition were modified to adapt to KF treatment. Overall, the present research provides a detailed view of P. aeruginosa adaptation and behaviour in response to KF and highlights the possible therapeutic approach of using plants to combat P. aeruginosa infections.http://dx.doi.org/10.1155/2020/6915483 |
spellingShingle | Mourouge Saadi Alwash Wan Syaidatul Aqma Wan Yaacob Ahmad Nazlina Ibrahim Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn Leaves International Journal of Microbiology |
title | Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn Leaves |
title_full | Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn Leaves |
title_fullStr | Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn Leaves |
title_full_unstemmed | Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn Leaves |
title_short | Transcriptomic Response in Pseudomonas aeruginosa towards Treatment with a Kaempferol Isolated from Melastoma malabathricum Linn Leaves |
title_sort | transcriptomic response in pseudomonas aeruginosa towards treatment with a kaempferol isolated from melastoma malabathricum linn leaves |
url | http://dx.doi.org/10.1155/2020/6915483 |
work_keys_str_mv | AT mourougesaadialwash transcriptomicresponseinpseudomonasaeruginosatowardstreatmentwithakaempferolisolatedfrommelastomamalabathricumlinnleaves AT wansyaidatulaqma transcriptomicresponseinpseudomonasaeruginosatowardstreatmentwithakaempferolisolatedfrommelastomamalabathricumlinnleaves AT wanyaacobahmad transcriptomicresponseinpseudomonasaeruginosatowardstreatmentwithakaempferolisolatedfrommelastomamalabathricumlinnleaves AT nazlinaibrahim transcriptomicresponseinpseudomonasaeruginosatowardstreatmentwithakaempferolisolatedfrommelastomamalabathricumlinnleaves |