Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2021/8855599 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561268993556480 |
---|---|
author | Yessica Hernández-Eliseo Josué Ramírez-Ortega Francisco G. Hernández-Zamora |
author_facet | Yessica Hernández-Eliseo Josué Ramírez-Ortega Francisco G. Hernández-Zamora |
author_sort | Yessica Hernández-Eliseo |
collection | DOAJ |
description | We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ2−ζ12, where both limits lims→0+bs and lims→+∞bs exist, and as belongs to the set of piecewise continuous functions on ℝ¯=−∞,+∞ and having one-side limit values at each point of a finite set S⊂ℝ. We prove that the C∗-algebra generated by all Toeplitz operators Tab is isomorphic to CΠ¯, where Π¯=ℝ¯×ℝ¯+ and ℝ¯+=0,+∞. |
format | Article |
id | doaj-art-1ebed50f6f2f4062b90e7ea0e894bff5 |
institution | Kabale University |
issn | 2314-8896 2314-8888 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces |
spelling | doaj-art-1ebed50f6f2f4062b90e7ea0e894bff52025-02-03T01:25:25ZengWileyJournal of Function Spaces2314-88962314-88882021-01-01202110.1155/2021/88555998855599Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent SymbolsYessica Hernández-Eliseo0Josué Ramírez-Ortega1Francisco G. Hernández-Zamora2Universidad Veracruzana, MexicoUniversidad Veracruzana, MexicoUniversidad Veracruzana, MexicoWe describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ2−ζ12, where both limits lims→0+bs and lims→+∞bs exist, and as belongs to the set of piecewise continuous functions on ℝ¯=−∞,+∞ and having one-side limit values at each point of a finite set S⊂ℝ. We prove that the C∗-algebra generated by all Toeplitz operators Tab is isomorphic to CΠ¯, where Π¯=ℝ¯×ℝ¯+ and ℝ¯+=0,+∞.http://dx.doi.org/10.1155/2021/8855599 |
spellingShingle | Yessica Hernández-Eliseo Josué Ramírez-Ortega Francisco G. Hernández-Zamora Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols Journal of Function Spaces |
title | Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_full | Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_fullStr | Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_full_unstemmed | Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_short | Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_sort | toeplitz operators acting on true poly bergman type spaces of the two dimensional siegel domain nilpotent symbols |
url | http://dx.doi.org/10.1155/2021/8855599 |
work_keys_str_mv | AT yessicahernandezeliseo toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols AT josueramirezortega toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols AT franciscoghernandezzamora toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols |