Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model

As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity o...

Full description

Saved in:
Bibliographic Details
Main Authors: Miaolei Zhou, Shoubin Wang, Wei Gao
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2013/865176
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
ISSN:1537-744X