Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspaces

We discuss the reproducing kernel structure in shift-invariant spaces and the weighted shift-invariant spaces, and obtain the reconstruction formula in time-warped weighted shift-invariant spaces, then apply them to a spline subspace. In the spline subspace, we give a reconstruction formula in a tim...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Xian, Yongjin Li
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203212126
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832547554547466240
author Jun Xian
Yongjin Li
author_facet Jun Xian
Yongjin Li
author_sort Jun Xian
collection DOAJ
description We discuss the reproducing kernel structure in shift-invariant spaces and the weighted shift-invariant spaces, and obtain the reconstruction formula in time-warped weighted shift-invariant spaces, then apply them to a spline subspace. In the spline subspace, we give a reconstruction formula in a time-warped spline subspace.
format Article
id doaj-art-1d86ad4fa37a40598f1e9a6c002b0ef6
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-1d86ad4fa37a40598f1e9a6c002b0ef62025-02-03T06:44:22ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003654131413710.1155/S0161171203212126Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspacesJun Xian0Yongjin Li1Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaDepartment of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaWe discuss the reproducing kernel structure in shift-invariant spaces and the weighted shift-invariant spaces, and obtain the reconstruction formula in time-warped weighted shift-invariant spaces, then apply them to a spline subspace. In the spline subspace, we give a reconstruction formula in a time-warped spline subspace.http://dx.doi.org/10.1155/S0161171203212126
spellingShingle Jun Xian
Yongjin Li
Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspaces
International Journal of Mathematics and Mathematical Sciences
title Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspaces
title_full Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspaces
title_fullStr Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspaces
title_full_unstemmed Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspaces
title_short Reconstruction in time-warped weighted shift-invariant spaces with application to spline subspaces
title_sort reconstruction in time warped weighted shift invariant spaces with application to spline subspaces
url http://dx.doi.org/10.1155/S0161171203212126
work_keys_str_mv AT junxian reconstructionintimewarpedweightedshiftinvariantspaceswithapplicationtosplinesubspaces
AT yongjinli reconstructionintimewarpedweightedshiftinvariantspaceswithapplicationtosplinesubspaces