Approximation Algorithm for a System of Pantograph Equations
We show how to adapt an efficient numerical algorithm to obtain an approximate solution of a system of pantograph equations. This algorithm is based on a combination of Laplace transform and Adomian decomposition method. Numerical examples reveal that the method is quite accurate and efficient, it a...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/714681 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561689674907648 |
---|---|
author | Sabir Widatalla Mohammed Abdulai Koroma |
author_facet | Sabir Widatalla Mohammed Abdulai Koroma |
author_sort | Sabir Widatalla |
collection | DOAJ |
description | We show how to adapt an efficient numerical algorithm to
obtain an approximate solution of a system of pantograph equations. This
algorithm is based on a combination of Laplace transform and Adomian
decomposition method. Numerical examples reveal that the method is
quite accurate and efficient, it approximates the solution to a very high
degree of accuracy after a few iterates. |
format | Article |
id | doaj-art-1c917415c941422faa63e48acec53f19 |
institution | Kabale University |
issn | 1110-757X 1687-0042 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Applied Mathematics |
spelling | doaj-art-1c917415c941422faa63e48acec53f192025-02-03T01:24:25ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/714681714681Approximation Algorithm for a System of Pantograph EquationsSabir Widatalla0Mohammed Abdulai Koroma1Department of Mathematics, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Mathematics, Harbin Institute of Technology, Harbin 150001, ChinaWe show how to adapt an efficient numerical algorithm to obtain an approximate solution of a system of pantograph equations. This algorithm is based on a combination of Laplace transform and Adomian decomposition method. Numerical examples reveal that the method is quite accurate and efficient, it approximates the solution to a very high degree of accuracy after a few iterates.http://dx.doi.org/10.1155/2012/714681 |
spellingShingle | Sabir Widatalla Mohammed Abdulai Koroma Approximation Algorithm for a System of Pantograph Equations Journal of Applied Mathematics |
title | Approximation Algorithm for a System of Pantograph Equations |
title_full | Approximation Algorithm for a System of Pantograph Equations |
title_fullStr | Approximation Algorithm for a System of Pantograph Equations |
title_full_unstemmed | Approximation Algorithm for a System of Pantograph Equations |
title_short | Approximation Algorithm for a System of Pantograph Equations |
title_sort | approximation algorithm for a system of pantograph equations |
url | http://dx.doi.org/10.1155/2012/714681 |
work_keys_str_mv | AT sabirwidatalla approximationalgorithmforasystemofpantographequations AT mohammedabdulaikoroma approximationalgorithmforasystemofpantographequations |