Leveraging Advanced NLP Techniques and Data Augmentation to Enhance Online Misogyny Detection

Online misogyny is a significant societal challenge that reinforces gender inequalities and discourages women from engaging fully in digital spaces. Traditional moderation methods often fail to address the dynamic and context-dependent nature of misogynistic language, making adaptive solutions essen...

Full description

Saved in:
Bibliographic Details
Main Authors: Alaa Mohasseb, Eslam Amer, Fatima Chiroma, Alessia Tranchese
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/856
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Online misogyny is a significant societal challenge that reinforces gender inequalities and discourages women from engaging fully in digital spaces. Traditional moderation methods often fail to address the dynamic and context-dependent nature of misogynistic language, making adaptive solutions essential. This study presents a framework that integrates advanced natural-language processing techniques with strategic data augmentation to improve the detection of misogynistic content. Key contributions include emoji decoding to interpret symbolic communication, contextual expansion using Sentence-Transformer models, and LDA-based topic modeling to enhance data richness and contextual understanding. The framework incorporates machine-learning, deep-learning, and Transformer-based models to handle complex and nuanced language. Performance analysis highlights the effectiveness of the selected models, and comparative results emphasize the transformative role of data augmentation. This augmentation significantly enhanced model robustness, improved generalization, and strengthened the detection of misogynistic content.
ISSN:2076-3417