Distance-Based Formation Control for Quadrotors with Collision Avoidance via Lyapunov Barrier Functions

In this paper, group formation control with collision avoidance is investigated for heterogeneous multiquadrotor vehicles. Specifically, the distance-based formation and tracking control problem are addressed in the framework of leader-follower architecture. In this scheme, the leader is assigned th...

Full description

Saved in:
Bibliographic Details
Main Authors: Jawhar Ghommam, Luis F. Luque-Vega, Maarouf Saad
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2020/2069631
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, group formation control with collision avoidance is investigated for heterogeneous multiquadrotor vehicles. Specifically, the distance-based formation and tracking control problem are addressed in the framework of leader-follower architecture. In this scheme, the leader is assigned the task of intercepting a target whose velocity is unknown, while the follower quadrotors are arranged to set up a predefined rigid formation pattern, ensuring simultaneously interagent collision avoidance and relative localization. The adopted strategy for the control design consists in decoupling the quadrotor dynamics in a cascaded structure to handle its underactuated property. Furthermore, by imposing constraints on the orientation angles, the follower will never be overturned. Rigorous stability analysis is presented to prove the stability of the entire closed-loop system. Numerical simulation results are presented to validate the proposed control strategy.
ISSN:1687-5966
1687-5974