Development and mechanistic studies of calcium–BINOL phosphate-catalyzed hydrocyanation of hydrazones

Asymmetric hydrocyanation of hydrazones, catalyzed by a calcium–BINOL phosphate complex, has been studied for the first time both experimentally and computationally with DFT methods. A full catalytic cycle for the enantioselective synthesis of α-hydrazinonitriles is proposed based on insights gained...

Full description

Saved in:
Bibliographic Details
Main Authors: Carola Tortora, Christian A. Fischer, Sascha Kohlbauer, Alexandru Zamfir, Gerd M. Ballmann, Jürgen Pahl, Sjoerd Harder, Svetlana B. Tsogoeva
Format: Article
Language:English
Published: Beilstein-Institut 2025-04-01
Series:Beilstein Journal of Organic Chemistry
Subjects:
Online Access:https://doi.org/10.3762/bjoc.21.59
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Asymmetric hydrocyanation of hydrazones, catalyzed by a calcium–BINOL phosphate complex, has been studied for the first time both experimentally and computationally with DFT methods. A full catalytic cycle for the enantioselective synthesis of α-hydrazinonitriles is proposed based on insights gained from DFT calculations. Trimethylsilyl cyanide (TMSCN) has been used as a sacrificial cyanide source. We found that isocyanide (rather than cyanide) is a preferred coordination to calcium during the catalytic cycle, while the active catalyst prefers a side-on coordination of cyanide. The configuration-determining step is a hydrocyanation via a calcium isocyanide complex, whereas the rate-limiting step is that which recovers the calcium catalyst and replaces the TMS-bound product from the catalyst. While our experimental data demonstrate enantioselectivity values as high as 89% under certain conditions, the overall enantioselectivity achieved with the calcium catalyst remains modest, mainly due to competing pathways for the Z- and E-hydrazone isomers leading to opposite enantiomers. The experimental results confirm these computational proposals.
ISSN:1860-5397