Advancements in Hematologic Malignancy Detection: A Comprehensive Survey of Methodologies and Emerging Trends

The investigation and diagnosis of hematologic malignancy using blood cell image analysis are major and emerging subjects that lie at the intersection of artificial intelligence and medical research. This survey systematically examines the state-of-the-art in blood cancer detection through image-bas...

Full description

Saved in:
Bibliographic Details
Main Authors: Rajashree Nambiar, Ranjith Bhat, Balachandra Achar H V
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/tswj/1671766
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The investigation and diagnosis of hematologic malignancy using blood cell image analysis are major and emerging subjects that lie at the intersection of artificial intelligence and medical research. This survey systematically examines the state-of-the-art in blood cancer detection through image-based analysis, aimed at identifying the most effective computational strategies and highlighting emerging trends. This review focuses on three principal objectives, namely, to categorize and compare traditional machine learning (ML), deep learning (DL), and hybrid learning approaches; to evaluate performance metrics such as accuracy, precision, recall, and area under the ROC curve; and to identify methodological gaps and propose directions for future research. Methodologically, we organize the literature by categorizing the malignancy types—leukemia, lymphoma, and multiple myeloma—and particularizing the preprocessing steps, feature extraction techniques, network architectures, and ensemble strategies employed. For ML methods, we discuss classical classifiers including support vector machines and random forests; for DL, we analyze convolutional neural networks (e.g., AlexNet, VGG, and ResNet) and transformer-based models; and for hybrid systems, we examine combinations of CNNs with attention mechanisms or traditional classifiers. Our synthesis reveals that DL models consistently outperform ML baselines, achieving classification accuracies above 95% in benchmark datasets, with hybrid models pushing peak accuracy to 99.7%. However, challenges remain in data scarcity, class imbalance, and generalizability to clinical settings. We conclude by recommending the integration of multimodal data, semisupervised learning, and rigorous external validation to advance toward deployable diagnostic tools. This survey also provides a comprehensive roadmap for researchers and clinicians striving to harness AI for reliable hematologic cancer detection.
ISSN:1537-744X