Optimization of Surface Roughness in Drilling Medium-Density Fiberboard with a Parallel Robot

This study focuses on the examination of the effect of cutting parameters on surface roughness when drilling medium-density fiberboard (MDF) with a parallel robot. Taguchi technique was applied to find the optimum drilling parameters and, later, the drilling processing. Experimental layout was estab...

Full description

Saved in:
Bibliographic Details
Main Authors: Elmas Aşkar Ayyıldız, Mustafa Ayyıldız, Fuat Kara
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2021/6658968
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study focuses on the examination of the effect of cutting parameters on surface roughness when drilling medium-density fiberboard (MDF) with a parallel robot. Taguchi technique was applied to find the optimum drilling parameters and, later, the drilling processing. Experimental layout was established using the Taguchi L18 orthogonal array, and experimental data were examined via a statistical analysis of variance (ANOVA). Experimental results were performed by multiple regression analysis (linear and quadratic). Correlation coefficient (R2) was found 99.46% for surface roughness with the quadratic regression model. By the Taguchi analysis, the optimum values for the surface roughness were found to be a point angle of 118°, a cutting speed of 47.1 m/min, and a feed rate of 0.01 mm/rev. The optimization outcomes presented that the Taguchi technique had been successfully performed to decide the optimal surface roughness of the MDF in the drilling.
ISSN:1687-8434
1687-8442