Sensor selection scheme in activity recognition based on hierarchical feature reduction

To better understand the activity state of human, we might need multiple sensors on different parts of the body. According to different types of activities, the number and slot of required sensors would also be different. Therefore, how to determine the number and slot of necessary sensors regarding...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Wei, Libin Jiao, Jie Sha, Jixin Ma, Anton Umek, Anton Kos
Format: Article
Language:English
Published: Wiley 2018-08-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1177/1550147718793801
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To better understand the activity state of human, we might need multiple sensors on different parts of the body. According to different types of activities, the number and slot of required sensors would also be different. Therefore, how to determine the number and slot of necessary sensors regarding to wearers’ experience and processing efficiency is a meaningful study in actual practice. In this work, we propose a novel sensor selection scheme that is based on the improvement of the feature reduction process of the recognition. This scheme applies a hierarchical feature reduction method based on mutual information with max relevance and low-dimensional embedding strategy. It divides the process of feature reduction into two stages: first, redundant sensors are removed with one-order sequential forward selection based on mutual information; second, feature selection strategy that maximizing class-relevance is integrated with low-dimensional mapping so that the set of features will be further compressed. To verify the feasibility and superiority of the scheme, we design a complete solution for real practice of human activity recognition. According to the results of the experiments, we are able to recognize human activities accurately and efficiently with as few sensors as possible.
ISSN:1550-1477