In Situ Carbon Coated LiNi0.5Mn1.5O4 Cathode Material Prepared by Prepolymer of Melamine Formaldehyde Resin Assisted Method

Carbon coated spinel LiNi0.5Mn1.5O4 were prepared by spray-drying using prepolymer of melamine formaldehyde resin (PMF) as carbon source of carbon coating layer. The PMF carbon coated LiNi0.5Mn1.5O4 was characterized by XRD, SEM, and other electrochemical measurements. The as-prepared lithium nickel...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Yang, Haifeng Dang, Shengzhou Chen, Hanbo Zou, Zili Liu, Jing Lin, Weiming Lin
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2016/4279457
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon coated spinel LiNi0.5Mn1.5O4 were prepared by spray-drying using prepolymer of melamine formaldehyde resin (PMF) as carbon source of carbon coating layer. The PMF carbon coated LiNi0.5Mn1.5O4 was characterized by XRD, SEM, and other electrochemical measurements. The as-prepared lithium nickel manganese oxide has the cubic face-centered spinel structure with a space group of Fd3m. It showed good electrochemical performance as a cathode material for lithium ion battery. After 100 discharge and charge cycles at 0.5 C rate, the specific discharge capacity of carbon coated LiNi0.5Mn1.5O4 was 130 mAh·g−1, and the corresponding capacity retention was 98.8%. The 100th cycle specific discharge capacity at 10 C rate of carbon coated LiNi0.5Mn1.5O4 was 105.4 mAh·g−1, and even the corresponding capacity retention was 95.2%.
ISSN:1687-9422
1687-9430