HfC–HfO2 modified high/superhigh temperature thermal protection coating for superior hot corrosion resistance and antioxidation performance
With advances in the thrust-weight ratio, the service temperature of gas turbine engines even exceeds 1500 °C, which is urgent for the development of high/superhigh-temperature thermal protection systems (TPSs) for long-term service. Niobium alloys are increasingly viewed as promising structural mat...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tsinghua University Press
2025-01-01
|
Series: | Journal of Advanced Ceramics |
Subjects: | |
Online Access: | https://www.sciopen.com/article/10.26599/JAC.2024.9221014 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With advances in the thrust-weight ratio, the service temperature of gas turbine engines even exceeds 1500 °C, which is urgent for the development of high/superhigh-temperature thermal protection systems (TPSs) for long-term service. Niobium alloys are increasingly viewed as promising structural materials for high-temperature applications because of their superior high-temperature mechanical strength, but the “pest” catastrophic oxidation greatly restricts their further application. In this study, a HfC–HfO2-modified silicide coating was prepared via an innovative method of halide-activated pack cementation (HAPC) combined with liquid-plasma-assisted particle deposition and sintering of niobium alloys, resulting in a composite coating with excellent hot corrosion resistance and high-temperature oxidation resistance. This modified multilayer coating is characterized by the synergistic combination of a dense NbSi2 inner layer and a HfC–HfO2 porous outer layer, resulting in a significant improvement in high-temperature performance compared with that of the single NbSi2 coating. The corrosion gain of the composite coating is only 13.94 mg·cm−2 after a corrosion time of 200 h at 900 °C, and an intact oxide scale surface is observed after oxidation at 1500 °C for 500 min. This improvement is attributed to the formation of a robust Hf-rich skeleton provided by the deposited HfC–HfO2 layer, which can accelerate the formation of a highly stable corroded layer/oxide scale. In addition, multiple stress release mechanisms of the composite coating at high temperatures also provide substantial contributions to long-term service. All these merits make HfC–HfO2-modified composite coatings on niobium alloys competitive for the development of high/superhigh-temperature thermal protection systems for long-term service. |
---|---|
ISSN: | 2226-4108 2227-8508 |