Molecular Dynamics Simulations of CO2 Molecules in ZIF-11 Using Refined AMBER Force Field

Nonbonding parameters of AMBER force field have been refined based on ab initio binding energies of CO2–[C7H5N2]− complexes. The energy and geometry scaling factors are obtained to be 1.2 and 0.9 for ε and σ parameters, respectively. Molecular dynamics simulations of CO2 molecules in rigid framework...

Full description

Saved in:
Bibliographic Details
Main Authors: W. Wongsinlatam, T. Remsungnen
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2013/415027
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonbonding parameters of AMBER force field have been refined based on ab initio binding energies of CO2–[C7H5N2]− complexes. The energy and geometry scaling factors are obtained to be 1.2 and 0.9 for ε and σ parameters, respectively. Molecular dynamics simulations of CO2 molecules in rigid framework ZIF-11, have then been performed using original AMBER parameters (SIM I) and refined parameters (SIM II), respectively. The site-site radial distribution functions and the molecular distribution plots simulations indicate that all hydrogen atoms are favored binding site of CO2 molecules. One slight but notable difference is that CO2 molecules are mostly located around and closer to hydrogen atom of imidazolate ring in SIM II than those found in SIM I. The Zn-Zn and Zn-N RDFs in free flexible framework simulation (SIM III) show validity of adapting AMBER bonding parameters. Due to the limitations of computing resources and times in this study, the results of flexible framework simulation using refined nonbonding AMBER parameters (SIM IV) are not much different from those obtained in SIM II.
ISSN:2090-9063
2090-9071