On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs
This work deals with the assessment of gate dielectric for 4H-SiC MOSFETs using technology based two-dimensional numerical computer simulations. Results are studied for variety of gate dielectric candidates with varying thicknesses using well-known Fowler-Nordheim tunneling model. Compared to conven...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2015-01-01
|
| Series: | Active and Passive Electronic Components |
| Online Access: | http://dx.doi.org/10.1155/2015/651527 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work deals with the assessment of gate dielectric for 4H-SiC MOSFETs using technology based two-dimensional numerical computer simulations. Results are studied for variety of gate dielectric candidates with varying thicknesses using well-known Fowler-Nordheim tunneling model. Compared to conventional SiO2 as a gate dielectric for 4H-SiC MOSFETs, high-k gate dielectric such as HfO2 reduces significantly the amount of electric field in the gate dielectric with equal gate dielectric thickness and hence the overall gate current density. High-k gate dielectric further reduces the shift in the threshold voltage with varying dielectric thicknesses, thus leading to better process margin and stable device operating behavior. For fixed dielectric thickness, a total shift in the threshold voltage of about 2.5 V has been observed with increasing dielectric constant from SiO2 (k=3.9) to HfO2 (k=25). This further results in higher transconductance of the device with the increase of the dielectric constant from SiO2 to HfO2. Furthermore, 4H-SiC MOSFETs are found to be more sensitive to the shift in the threshold voltage with conventional SiO2 as gate dielectric than high-k dielectric with the presence of interface state charge density that is typically observed at the interface of dielectric and 4H-SiC MOS surface. |
|---|---|
| ISSN: | 0882-7516 1563-5031 |