Advancing privacy-aware machine learning on sensitive data via edge-based continual µ-training for personalized large models
This paper introduces an innovative method for fine-tuning a large multi-label model for abnormality detection, utilizing a smaller trainer and advanced knowledge distillation techniques. It studies the effects of fine-tuning on various abnormalities, noting different improvements based on the Origi...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2025-01-01
|
Series: | Machine Learning: Science and Technology |
Subjects: | |
Online Access: | https://doi.org/10.1088/2632-2153/adaca3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|