Numerical analysis of hydrogen recombination on a vertical flat plate catalyst
This study conducts a computational fluid dynamics (CFD) analysis to assess passive autocatalytic recombiners (PARs) for mitigating hydrogen risks in severe accidents. We modeled hydrogen-air mixtures' thermal-fluid dynamics and chemical reactions, comparing single-step reaction rate models wit...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-03-01
|
Series: | Results in Engineering |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590123025002075 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study conducts a computational fluid dynamics (CFD) analysis to assess passive autocatalytic recombiners (PARs) for mitigating hydrogen risks in severe accidents. We modeled hydrogen-air mixtures' thermal-fluid dynamics and chemical reactions, comparing single-step reaction rate models with detailed chemical mechanisms on platinum-coated catalyst plates. Results indicate that the simplified single-step model accurately predicts hydrogen recombination on Pt surfaces. Incorporating radiative heat transfer was essential; neglecting it led to significant overestimations of catalyst plate temperatures and hydrogen removal rates. While CFD results aligned with experimental trends from the REKO-3 apparatus, discrepancies arose due to overestimated recombination rates. These findings highlight the importance of precise chemical and thermal modeling in optimizing PAR design, enhancing hydrogen reduction efficiency, and minimizing auto-ignition risks. The validated CFD model offers valuable guidance for improving hydrogen removal efficiency of PARs during severe accidents. |
---|---|
ISSN: | 2590-1230 |