The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group

In this article, we define a kind of truncated maximal function on the Heisenberg space by Mγcfx=sup0<r<γ1/mBx,r∫Bx,rfydy. The equivalence of operator norm between the Hardy-Littlewood maximal function and the truncated maximal function on the Heisenberg group is obtained. More specifically, w...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiang Li, Xingsong Zhang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/7612482
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546038846586880
author Xiang Li
Xingsong Zhang
author_facet Xiang Li
Xingsong Zhang
author_sort Xiang Li
collection DOAJ
description In this article, we define a kind of truncated maximal function on the Heisenberg space by Mγcfx=sup0<r<γ1/mBx,r∫Bx,rfydy. The equivalence of operator norm between the Hardy-Littlewood maximal function and the truncated maximal function on the Heisenberg group is obtained. More specifically, when 1<p<∞, the Lp norm and central Morrey norm of truncated maximal function are equal to those of the Hardy-Littlewood maximal function. When p=1, we get the equivalence of weak norm L1⟶L1,∞ and Ṁ1,λ⟶ẆM1,λ. Those results are generalization of previous work on Euclid spaces.
format Article
id doaj-art-11184b5c59e14af2a8c8bed567302c9a
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-11184b5c59e14af2a8c8bed567302c9a2025-02-03T07:23:53ZengWileyJournal of Function Spaces2314-88962314-88882021-01-01202110.1155/2021/76124827612482The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg GroupXiang Li0Xingsong Zhang1School of Mathematics and Finance, Chuzhou University, Chuzhou, Anhui 239012, ChinaRDFZ Chaoyang School, Beijing 100028, ChinaIn this article, we define a kind of truncated maximal function on the Heisenberg space by Mγcfx=sup0<r<γ1/mBx,r∫Bx,rfydy. The equivalence of operator norm between the Hardy-Littlewood maximal function and the truncated maximal function on the Heisenberg group is obtained. More specifically, when 1<p<∞, the Lp norm and central Morrey norm of truncated maximal function are equal to those of the Hardy-Littlewood maximal function. When p=1, we get the equivalence of weak norm L1⟶L1,∞ and Ṁ1,λ⟶ẆM1,λ. Those results are generalization of previous work on Euclid spaces.http://dx.doi.org/10.1155/2021/7612482
spellingShingle Xiang Li
Xingsong Zhang
The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group
Journal of Function Spaces
title The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group
title_full The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group
title_fullStr The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group
title_full_unstemmed The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group
title_short The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group
title_sort equivalence of operator norm between the hardy littlewood maximal function and truncated maximal function on the heisenberg group
url http://dx.doi.org/10.1155/2021/7612482
work_keys_str_mv AT xiangli theequivalenceofoperatornormbetweenthehardylittlewoodmaximalfunctionandtruncatedmaximalfunctionontheheisenberggroup
AT xingsongzhang theequivalenceofoperatornormbetweenthehardylittlewoodmaximalfunctionandtruncatedmaximalfunctionontheheisenberggroup
AT xiangli equivalenceofoperatornormbetweenthehardylittlewoodmaximalfunctionandtruncatedmaximalfunctionontheheisenberggroup
AT xingsongzhang equivalenceofoperatornormbetweenthehardylittlewoodmaximalfunctionandtruncatedmaximalfunctionontheheisenberggroup