A dataset of annotated African plum images from Cameroon for AI-based quality assessmentKaggle

This paper presents a dataset of 4507 annotated images of African plums collected across diverse regions in Cameroon, marking the first dataset specifically designed for AI-driven quality assessment of this fruit. The dataset is categorized into six quality grades: unaffected, bruised, cracked, rott...

Full description

Saved in:
Bibliographic Details
Main Authors: Arnaud Nguembang Fadja, Armel Gabin Fameni Tagni, Sain Rigobert Che, Marcellin Atemkeng
Format: Article
Language:English
Published: Elsevier 2025-04-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340925000836
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a dataset of 4507 annotated images of African plums collected across diverse regions in Cameroon, marking the first dataset specifically designed for AI-driven quality assessment of this fruit. The dataset is categorized into six quality grades: unaffected, bruised, cracked, rotten, spotted, and unripe. These categories represent varying degrees of plum quality, from optimal condition to various defects and ripeness levels. Captured under natural lighting using a consistent smartphone setup, the images were meticulously labeled by agricultural experts, ensuring high annotation accuracy. This resource is valuable for developing and testing computer vision, deep learning-based recognition systems and object detection models in agriculture, enabling automated evaluation of plum quality for commercialization. By offering a comprehensive, culturally relevant dataset focused on a traditionally underrepresented crop, this work supports advancements in precision agriculture, particularly in developing regions. Potential applications include AI-based tools for real-time sorting, defect detection, and quality assurance in the supply chain.
ISSN:2352-3409