Edge-AI Enabled Wearable Device for Non-Invasive Type 1 Diabetes Detection Using ECG Signals

Diabetes is a chronic condition, and traditional monitoring methods are invasive, significantly reducing the quality of life of the patients. This study proposes the design of an innovative system based on a microcontroller that performs real-time ECG acquisition and evaluates the presence of diabet...

Full description

Saved in:
Bibliographic Details
Main Authors: Maria Gragnaniello, Vincenzo Romano Marrazzo, Alessandro Borghese, Luca Maresca, Giovanni Breglio, Michele Riccio
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/1/4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diabetes is a chronic condition, and traditional monitoring methods are invasive, significantly reducing the quality of life of the patients. This study proposes the design of an innovative system based on a microcontroller that performs real-time ECG acquisition and evaluates the presence of diabetes using an Edge-AI solution. A spectrogram-based preprocessing method is combined with a 1-Dimensional Convolutional Neural Network (1D-CNN) to analyze the ECG signals directly on the device. By applying quantization as an optimization technique, the model effectively balances memory usage and accuracy, achieving an accuracy of 89.52% with an average precision and recall of 0.91 and 0.90, respectively. These results were obtained with a minimal memory footprint of 347 kB flash and 23 kB RAM, showcasing the system’s suitability for wearable embedded devices. Furthermore, a custom PCB was developed to validate the system in a real-world scenario. The hardware integrates high-performance electronics with low power consumption, demonstrating the feasibility of deploying Edge-AI for non-invasive, real-time diabetes detection in resource-constrained environments. This design represents a significant step forward in improving the accessibility and practicality of diabetes monitoring.
ISSN:2306-5354