Synthesis and Optimization of MWCNTs on Co-Ni/MgO by Thermal CVD
Multiwalled carbon nanotubes (MWCNTs) were prepared by the thermal chemical vapor deposition (CVD) technique. Monometallic and bimetallic Co and Ni combinations were used as a catalyst on MgO support. The mixer of H2/C2H2 was used as a carbon source. The prepared CNTs were found to possess different...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2008-01-01
|
Series: | Advances in Condensed Matter Physics |
Online Access: | http://dx.doi.org/10.1155/2008/971457 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiwalled carbon nanotubes (MWCNTs) were prepared by the thermal chemical vapor deposition (CVD) technique. Monometallic and bimetallic Co and Ni combinations were used as a catalyst on MgO support. The mixer of H2/C2H2 was used as a carbon source. The prepared CNTs were found to possess different shapes, morphologies, and sizes. Maximum yield was found for 50% Co (MgO: 50% and Ni: 0%) catalyst at 600°C. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) techniques were used for structural analysis. Raman spectra were taken to investigate the quality and crystalline perfection of the prepared CNTs. The ratio of D- and G-bands (ID/IG) was measured from these spectra. |
---|---|
ISSN: | 1687-8108 1687-8124 |