The Design and Evaluation of a Direction Sensor System Using Color Marker Patterns Onboard Small Fixed-Wing UAVs in a Wireless Relay System
Among the several usages of unmanned aerial vehicles (UAVs), a wireless relay system is one of the most promising applications. Specifically, a small fixed-wing UAV is suitable to establish the system promptly. In the system, an antenna pointing control system directs an onboard antenna to a ground...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Aerospace |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2226-4310/12/3/216 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Among the several usages of unmanned aerial vehicles (UAVs), a wireless relay system is one of the most promising applications. Specifically, a small fixed-wing UAV is suitable to establish the system promptly. In the system, an antenna pointing control system directs an onboard antenna to a ground station in order to form and maintain a communication link between the UAV and the ground station. In this paper, we propose a sensor system to detect the direction of the ground station from the UAV by using color marker patterns for the antenna pointing control system. The sensor detects the difference between the antenna pointing direction and the ground station direction. The sensor is characterized by the usage of both the color information of multiple color markers and color marker pattern matching. These enable the detection of distant, low-resolution markers, a high accuracy of marker detection, and robust marker detection against motion blur. In this paper, we describe the detailed algorithm of the sensor, and its performance is evaluated by using the prototype sensor system. Experimental performance evaluation results showed that the proposed method had a minimum detectable drawing size of 10.2 pixels, a motion blur tolerance of 0.0175, and a detection accuracy error of less than 0.12 deg. This performance indicates that the method has a minimum detectable draw size that is half that of the ArUco marker (a common AR marker), is 15.9 times more tolerant of motion blur than the ArUco marker, and has a detection accuracy error twice that of the ArUco marker. The color markers in the proposed method can be placed farther away or be smaller in size than ArUco markers, and they can be detected by the onboard camera even if the aircraft’s attitude changes significantly. The proposed method using color marker patterns has the potential to improve the operational flexibility of radio relay systems utilizing UAVs and is expected to be further developed in the future. |
|---|---|
| ISSN: | 2226-4310 |