A multitask deep learning model utilizing electrocardiograms for major cardiovascular adverse events prediction
Abstract Deep learning analysis of electrocardiography (ECG) may predict cardiovascular outcomes. We present a novel multi-task deep learning model, the ECG-MACE, which predicts the one-year first-ever major adverse cardiovascular events (MACE) using 2,821,889 standard 12-lead ECGs, including traini...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-024-01410-3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|