PseudoCell: Hard Negative Mining as Pseudo Labeling for Deep Learning-Based Centroblast Cell Detection

<italic>Background:</italic> Deep learning models for patch classification in whole-slide images (WSIs) have shown promise in assisting follicular lymphoma grading. However, these models often require pathologists to identify centroblasts and manually provide refined labels for model opt...

Full description

Saved in:
Bibliographic Details
Main Authors: Narongrid Seesawad, Piyalitt Ittichaiwong, Thapanun Sudhawiyangkul, Phattarapong Sawangjai, Peti Thuwajit, Paisarn Boonsakan, Supasan Sripodok, Kanyakorn Veerakanjana, Komgrid Charngkaew, Ananya Pongpaibul, Napat Angkathunyakul, Narit Hnoohom, Sumeth Yuenyong, Chanitra Thuwajit, Theerawit Wilaiprasitporn
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Engineering in Medicine and Biology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10542389/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<italic>Background:</italic> Deep learning models for patch classification in whole-slide images (WSIs) have shown promise in assisting follicular lymphoma grading. However, these models often require pathologists to identify centroblasts and manually provide refined labels for model optimization. <italic>Objective:</italic> To address this limitation, we propose <italic>PseudoCell</italic>, an object detection framework for automated centroblast detection in WSI, eliminating the need for extensive pathologist&#x0027;s refined labels. <italic>Methods:</italic> <italic>PseudoCell</italic> leverages a combination of pathologist-provided centroblast labels and pseudo-negative labels generated from undersampled false-positive predictions based on cell morphology features. This approach reduces the reliance on time-consuming manual annotations. <italic>Results:</italic> Our framework significantly reduces the workload for pathologists by accurately identifying and narrowing down areas of interest containing centroblasts. Depending on the confidence threshold, <italic>PseudoCell</italic> can eliminate 58.18-99.35&#x0025; of irrelevant tissue areas on WSI, streamlining the diagnostic process. <italic>Conclusion:</italic> This study presents <italic>PseudoCell</italic> as a practical and efficient prescreening method for centroblast detection, eliminating the need for refined labels from pathologists. The discussion section provides detailed guidance for implementing <italic>PseudoCell</italic> in clinical practice.
ISSN:2644-1276