Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury

Introduction: The loss of vasculature in Spinal Cord Injury (SCI) contributes to secondary injury, expanding the injury to unharmed spinal cord (SC) regions. Understanding these mechanisms is crucial for developing therapeutic interventions. Research question: Comprehensive analysis of the temporosp...

Full description

Saved in:
Bibliographic Details
Main Authors: Christian J. Entenmann, Emily J. von Bronewski, Lilly Waldmann, Lea Meyer, Katharina Kersting, Laurens T. Roolfs, Lasse M. Schleker, Melina Nieminen-Kelhä, Irina Kremenetskaia, Frank L. Heppner, Michael G. Fehlings, Peter Vajkoczy, Vanessa Hubertus
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Brain and Spine
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772529425000104
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832582997224718336
author Christian J. Entenmann
Emily J. von Bronewski
Lilly Waldmann
Lea Meyer
Katharina Kersting
Laurens T. Roolfs
Lasse M. Schleker
Melina Nieminen-Kelhä
Irina Kremenetskaia
Frank L. Heppner
Michael G. Fehlings
Peter Vajkoczy
Vanessa Hubertus
author_facet Christian J. Entenmann
Emily J. von Bronewski
Lilly Waldmann
Lea Meyer
Katharina Kersting
Laurens T. Roolfs
Lasse M. Schleker
Melina Nieminen-Kelhä
Irina Kremenetskaia
Frank L. Heppner
Michael G. Fehlings
Peter Vajkoczy
Vanessa Hubertus
author_sort Christian J. Entenmann
collection DOAJ
description Introduction: The loss of vasculature in Spinal Cord Injury (SCI) contributes to secondary injury, expanding the injury to unharmed spinal cord (SC) regions. Understanding these mechanisms is crucial for developing therapeutic interventions. Research question: Comprehensive analysis of the temporospatial dynamics of vascular injury and regeneration following SCI. Materials and methods: Adult C57BL/6J mice were subjected to clip-compression SCI (Th 6/7, 5g, 60s, n = 20) or sham injury (laminectomy, n = 4), and sacrificed at 1, 3, 7, 14, and 28 days (d) post-injury following intracardial fluorescein isothiocyanate (FITC)-Lectin perfusion. Histological analysis (CD31, FITC-Lectin, Ki-67, IgG, TER-119) assessed vascular changes, permeability, and proliferation within the injury epicenter (region 0 (R0), ± 0,5 mm) and two adjacent SC regions (R1: ± 1 mm, R2: ± 2.5 mm). Results: Perfusion loss (FITC-Lectin+/CD31+), was most severe in R0 and R1 at d3 (p < 0.01). Significant vascular loss in R2 started at d3 (p = 0.043). Perfusion was restored at d28 in R0 and R1, and at d7 in R2. Vessel density (CD31+) returned to baseline quicker (R0: d3, R1 and R2: d14). Vascular proliferation (CD31+/Ki-67+) manifested across all regions at d3 (p < 0.01), and most notably in R2 (p < 0.01). Vascular permeability for IgG remained disrupted until d3 in R0 and R1 and until d14 in R2. Discussion and conclusion: Vascular injury is most severe initially and spreads to the surrounding SC regions. Gradual vascular regeneration occurs early and up to a considerable distance from the injury epicenter, highlighting the potential of early therapeutic interventions targeted at vascular repair and regeneration.
format Article
id doaj-art-0bf3ae4d76094fd29d44ece5b7366f72
institution Kabale University
issn 2772-5294
language English
publishDate 2025-01-01
publisher Elsevier
record_format Article
series Brain and Spine
spelling doaj-art-0bf3ae4d76094fd29d44ece5b7366f722025-01-29T05:02:46ZengElsevierBrain and Spine2772-52942025-01-015104191Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord InjuryChristian J. Entenmann0Emily J. von Bronewski1Lilly Waldmann2Lea Meyer3Katharina Kersting4Laurens T. Roolfs5Lasse M. Schleker6Melina Nieminen-Kelhä7Irina Kremenetskaia8Frank L. Heppner9Michael G. Fehlings10Peter Vajkoczy11Vanessa Hubertus12Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Cluster of Excellence, NeuroCure, Berlin, GermanyDivision of Neurosurgery and Krembil Neuroscience Center, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, CanadaDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, GermanyDepartment of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health (BIH) – Charité Clinician Scientist Program, Berlin, Germany; Corresponding author. Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Charitéplatz 1, 10117, Berlin, Germany.Introduction: The loss of vasculature in Spinal Cord Injury (SCI) contributes to secondary injury, expanding the injury to unharmed spinal cord (SC) regions. Understanding these mechanisms is crucial for developing therapeutic interventions. Research question: Comprehensive analysis of the temporospatial dynamics of vascular injury and regeneration following SCI. Materials and methods: Adult C57BL/6J mice were subjected to clip-compression SCI (Th 6/7, 5g, 60s, n = 20) or sham injury (laminectomy, n = 4), and sacrificed at 1, 3, 7, 14, and 28 days (d) post-injury following intracardial fluorescein isothiocyanate (FITC)-Lectin perfusion. Histological analysis (CD31, FITC-Lectin, Ki-67, IgG, TER-119) assessed vascular changes, permeability, and proliferation within the injury epicenter (region 0 (R0), ± 0,5 mm) and two adjacent SC regions (R1: ± 1 mm, R2: ± 2.5 mm). Results: Perfusion loss (FITC-Lectin+/CD31+), was most severe in R0 and R1 at d3 (p < 0.01). Significant vascular loss in R2 started at d3 (p = 0.043). Perfusion was restored at d28 in R0 and R1, and at d7 in R2. Vessel density (CD31+) returned to baseline quicker (R0: d3, R1 and R2: d14). Vascular proliferation (CD31+/Ki-67+) manifested across all regions at d3 (p < 0.01), and most notably in R2 (p < 0.01). Vascular permeability for IgG remained disrupted until d3 in R0 and R1 and until d14 in R2. Discussion and conclusion: Vascular injury is most severe initially and spreads to the surrounding SC regions. Gradual vascular regeneration occurs early and up to a considerable distance from the injury epicenter, highlighting the potential of early therapeutic interventions targeted at vascular repair and regeneration.http://www.sciencedirect.com/science/article/pii/S2772529425000104Spinal cord injuryVascular injuryVascular proliferationBlood spinal cord barrierRevascularizationAngiogenesis
spellingShingle Christian J. Entenmann
Emily J. von Bronewski
Lilly Waldmann
Lea Meyer
Katharina Kersting
Laurens T. Roolfs
Lasse M. Schleker
Melina Nieminen-Kelhä
Irina Kremenetskaia
Frank L. Heppner
Michael G. Fehlings
Peter Vajkoczy
Vanessa Hubertus
Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury
Brain and Spine
Spinal cord injury
Vascular injury
Vascular proliferation
Blood spinal cord barrier
Revascularization
Angiogenesis
title Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury
title_full Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury
title_fullStr Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury
title_full_unstemmed Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury
title_short Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury
title_sort analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental spinal cord injury
topic Spinal cord injury
Vascular injury
Vascular proliferation
Blood spinal cord barrier
Revascularization
Angiogenesis
url http://www.sciencedirect.com/science/article/pii/S2772529425000104
work_keys_str_mv AT christianjentenmann analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT emilyjvonbronewski analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT lillywaldmann analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT leameyer analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT katharinakersting analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT laurenstroolfs analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT lassemschleker analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT melinanieminenkelha analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT irinakremenetskaia analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT franklheppner analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT michaelgfehlings analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT petervajkoczy analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury
AT vanessahubertus analysisofthespatiotemporaldynamicsofvascularinjuryandregenerationfollowingexperimentalspinalcordinjury