Lower Bound Solution of Foundation Bearing Capacity beneath Strip Footing Based on Parabolic Mohr Failure Criterion

The static allowable stress field of foundation under strip foundation is constructed by means of stress columns, and the calculation method of the lower bound foundation bearing capacity based on the two-parameter parabolic Mohr yield criterion is proposed. Moreover, the influence of the amount of...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang Wei, Shi Li-jun
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2020/8897777
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The static allowable stress field of foundation under strip foundation is constructed by means of stress columns, and the calculation method of the lower bound foundation bearing capacity based on the two-parameter parabolic Mohr yield criterion is proposed. Moreover, the influence of the amount of stress columns and material mechanical parameters on the lower bound bearing capacity is analyzed. The results show that a better solution can be obtained by optimizing the static allowable stress field. However, the improvement of lower bound solution might be inefficient if the stress column amount is large enough. The stresses of the superimposition area show a reduction with the improvement of stress field; on the other hand, the superposed stresses are enhanced ever faster as the involved stress column increases. The tensile-compressive strength ratio has a moderate effect on the lower bound solution. Finally, the reliability of the proposed method is verified by some rock foundation loading tests.
ISSN:1687-8086
1687-8094