Joint genetic analysis using variant sets reveals polygenic gene-context interactions.
Joint genetic models for multiple traits have helped to enhance association analyses. Most existing multi-trait models have been designed to increase power for detecting associations, whereas the analysis of interactions has received considerably less attention. Here, we propose iSet, a method based...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2017-04-01
|
| Series: | PLoS Genetics |
| Online Access: | https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006693&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Joint genetic models for multiple traits have helped to enhance association analyses. Most existing multi-trait models have been designed to increase power for detecting associations, whereas the analysis of interactions has received considerably less attention. Here, we propose iSet, a method based on linear mixed models to test for interactions between sets of variants and environmental states or other contexts. Our model generalizes previous interaction tests and in particular provides a test for local differences in the genetic architecture between contexts. We first use simulations to validate iSet before applying the model to the analysis of genotype-environment interactions in an eQTL study. Our model retrieves a larger number of interactions than alternative methods and reveals that up to 20% of cases show context-specific configurations of causal variants. Finally, we apply iSet to test for sub-group specific genetic effects in human lipid levels in a large human cohort, where we identify a gene-sex interaction for C-reactive protein that is missed by alternative methods. |
|---|---|
| ISSN: | 1553-7390 1553-7404 |