A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria

Abstract Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacte...

Full description

Saved in:
Bibliographic Details
Main Authors: Peter Lasch, Wolfgang Beyer, Alejandra Bosch, Rainer Borriss, Michal Drevinek, Susann Dupke, Monika Ehling-Schulz, Xuewen Gao, Roland Grunow, Daniela Jacob, Silke R. Klee, Armand Paauw, Jörg Rau, Andy Schneider, Holger C. Scholz, Maren Stämmler, Le Thi Thanh Tam, Herbert Tomaso, Guido Werner, Joerg Doellinger
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-04504-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571976668938240
author Peter Lasch
Wolfgang Beyer
Alejandra Bosch
Rainer Borriss
Michal Drevinek
Susann Dupke
Monika Ehling-Schulz
Xuewen Gao
Roland Grunow
Daniela Jacob
Silke R. Klee
Armand Paauw
Jörg Rau
Andy Schneider
Holger C. Scholz
Maren Stämmler
Le Thi Thanh Tam
Herbert Tomaso
Guido Werner
Joerg Doellinger
author_facet Peter Lasch
Wolfgang Beyer
Alejandra Bosch
Rainer Borriss
Michal Drevinek
Susann Dupke
Monika Ehling-Schulz
Xuewen Gao
Roland Grunow
Daniela Jacob
Silke R. Klee
Armand Paauw
Jörg Rau
Andy Schneider
Holger C. Scholz
Maren Stämmler
Le Thi Thanh Tam
Herbert Tomaso
Guido Werner
Joerg Doellinger
author_sort Peter Lasch
collection DOAJ
description Abstract Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.
format Article
id doaj-art-0aa5129e7ddd4d77bdee1d591ea61dcf
institution Kabale University
issn 2052-4463
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-0aa5129e7ddd4d77bdee1d591ea61dcf2025-02-02T12:08:06ZengNature PortfolioScientific Data2052-44632025-01-0112111310.1038/s41597-025-04504-zA MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteriaPeter Lasch0Wolfgang Beyer1Alejandra Bosch2Rainer Borriss3Michal Drevinek4Susann Dupke5Monika Ehling-Schulz6Xuewen Gao7Roland Grunow8Daniela Jacob9Silke R. Klee10Armand Paauw11Jörg Rau12Andy Schneider13Holger C. Scholz14Maren Stämmler15Le Thi Thanh Tam16Herbert Tomaso17Guido Werner18Joerg Doellinger19Robert Koch Institute, ZBS 6 - Proteomics and SpectroscopyAdvisory Panel of the Medical Academy of the German Armed Forces, Bundeswehr Institute of MicrobiologyCINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La PlataInstitute of Marine Biotechnology e.V. (IMaB)National Institute for Nuclear, Chemical and Biological ProtectionRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsFunctional Microbiology, Institute of Microbiology, University of Veterinary MedicineCollege of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and PestsRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsNetherlands Organization for Applied Scientific Research TNO, Department of CBRN ProtectionChemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS)Robert Koch Institute, ZBS 6 - Proteomics and SpectroscopyRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsRobert Koch Institute, ZBS 6 - Proteomics and SpectroscopyDivision of Plant Pathology and Phyto-Immunology, Plant Protection Research InstituteFriedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal HealthRobert Koch Institute, Nosocomial Pathogens and Antibiotic Resistances (FG13) and National Reference Centre for Staphylococci and EnterococciRobert Koch Institute, ZBS 6 - Proteomics and SpectroscopyAbstract Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.https://doi.org/10.1038/s41597-025-04504-z
spellingShingle Peter Lasch
Wolfgang Beyer
Alejandra Bosch
Rainer Borriss
Michal Drevinek
Susann Dupke
Monika Ehling-Schulz
Xuewen Gao
Roland Grunow
Daniela Jacob
Silke R. Klee
Armand Paauw
Jörg Rau
Andy Schneider
Holger C. Scholz
Maren Stämmler
Le Thi Thanh Tam
Herbert Tomaso
Guido Werner
Joerg Doellinger
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
Scientific Data
title A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
title_full A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
title_fullStr A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
title_full_unstemmed A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
title_short A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
title_sort maldi tof mass spectrometry database for identification and classification of highly pathogenic bacteria
url https://doi.org/10.1038/s41597-025-04504-z
work_keys_str_mv AT peterlasch amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT wolfgangbeyer amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT alejandrabosch amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT rainerborriss amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT michaldrevinek amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT susanndupke amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT monikaehlingschulz amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT xuewengao amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT rolandgrunow amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT danielajacob amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT silkerklee amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT armandpaauw amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT jorgrau amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT andyschneider amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT holgercscholz amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT marenstammler amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT lethithanhtam amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT herberttomaso amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT guidowerner amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT joergdoellinger amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT peterlasch malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT wolfgangbeyer malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT alejandrabosch malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT rainerborriss malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT michaldrevinek malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT susanndupke malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT monikaehlingschulz malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT xuewengao malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT rolandgrunow malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT danielajacob malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT silkerklee malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT armandpaauw malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT jorgrau malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT andyschneider malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT holgercscholz malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT marenstammler malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT lethithanhtam malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT herberttomaso malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT guidowerner malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria
AT joergdoellinger malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria