A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
Abstract Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacte...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Scientific Data |
Online Access: | https://doi.org/10.1038/s41597-025-04504-z |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832571976668938240 |
---|---|
author | Peter Lasch Wolfgang Beyer Alejandra Bosch Rainer Borriss Michal Drevinek Susann Dupke Monika Ehling-Schulz Xuewen Gao Roland Grunow Daniela Jacob Silke R. Klee Armand Paauw Jörg Rau Andy Schneider Holger C. Scholz Maren Stämmler Le Thi Thanh Tam Herbert Tomaso Guido Werner Joerg Doellinger |
author_facet | Peter Lasch Wolfgang Beyer Alejandra Bosch Rainer Borriss Michal Drevinek Susann Dupke Monika Ehling-Schulz Xuewen Gao Roland Grunow Daniela Jacob Silke R. Klee Armand Paauw Jörg Rau Andy Schneider Holger C. Scholz Maren Stämmler Le Thi Thanh Tam Herbert Tomaso Guido Werner Joerg Doellinger |
author_sort | Peter Lasch |
collection | DOAJ |
description | Abstract Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods. |
format | Article |
id | doaj-art-0aa5129e7ddd4d77bdee1d591ea61dcf |
institution | Kabale University |
issn | 2052-4463 |
language | English |
publishDate | 2025-01-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Data |
spelling | doaj-art-0aa5129e7ddd4d77bdee1d591ea61dcf2025-02-02T12:08:06ZengNature PortfolioScientific Data2052-44632025-01-0112111310.1038/s41597-025-04504-zA MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteriaPeter Lasch0Wolfgang Beyer1Alejandra Bosch2Rainer Borriss3Michal Drevinek4Susann Dupke5Monika Ehling-Schulz6Xuewen Gao7Roland Grunow8Daniela Jacob9Silke R. Klee10Armand Paauw11Jörg Rau12Andy Schneider13Holger C. Scholz14Maren Stämmler15Le Thi Thanh Tam16Herbert Tomaso17Guido Werner18Joerg Doellinger19Robert Koch Institute, ZBS 6 - Proteomics and SpectroscopyAdvisory Panel of the Medical Academy of the German Armed Forces, Bundeswehr Institute of MicrobiologyCINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La PlataInstitute of Marine Biotechnology e.V. (IMaB)National Institute for Nuclear, Chemical and Biological ProtectionRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsFunctional Microbiology, Institute of Microbiology, University of Veterinary MedicineCollege of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and PestsRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsNetherlands Organization for Applied Scientific Research TNO, Department of CBRN ProtectionChemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS)Robert Koch Institute, ZBS 6 - Proteomics and SpectroscopyRobert Koch Institute, ZBS 2 - Highly Pathogenic MicroorganismsRobert Koch Institute, ZBS 6 - Proteomics and SpectroscopyDivision of Plant Pathology and Phyto-Immunology, Plant Protection Research InstituteFriedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal HealthRobert Koch Institute, Nosocomial Pathogens and Antibiotic Resistances (FG13) and National Reference Centre for Staphylococci and EnterococciRobert Koch Institute, ZBS 6 - Proteomics and SpectroscopyAbstract Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.https://doi.org/10.1038/s41597-025-04504-z |
spellingShingle | Peter Lasch Wolfgang Beyer Alejandra Bosch Rainer Borriss Michal Drevinek Susann Dupke Monika Ehling-Schulz Xuewen Gao Roland Grunow Daniela Jacob Silke R. Klee Armand Paauw Jörg Rau Andy Schneider Holger C. Scholz Maren Stämmler Le Thi Thanh Tam Herbert Tomaso Guido Werner Joerg Doellinger A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria Scientific Data |
title | A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
title_full | A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
title_fullStr | A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
title_full_unstemmed | A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
title_short | A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
title_sort | maldi tof mass spectrometry database for identification and classification of highly pathogenic bacteria |
url | https://doi.org/10.1038/s41597-025-04504-z |
work_keys_str_mv | AT peterlasch amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT wolfgangbeyer amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT alejandrabosch amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT rainerborriss amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT michaldrevinek amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT susanndupke amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT monikaehlingschulz amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT xuewengao amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT rolandgrunow amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT danielajacob amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT silkerklee amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT armandpaauw amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT jorgrau amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT andyschneider amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT holgercscholz amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT marenstammler amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT lethithanhtam amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT herberttomaso amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT guidowerner amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT joergdoellinger amalditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT peterlasch malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT wolfgangbeyer malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT alejandrabosch malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT rainerborriss malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT michaldrevinek malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT susanndupke malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT monikaehlingschulz malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT xuewengao malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT rolandgrunow malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT danielajacob malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT silkerklee malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT armandpaauw malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT jorgrau malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT andyschneider malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT holgercscholz malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT marenstammler malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT lethithanhtam malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT herberttomaso malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT guidowerner malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria AT joergdoellinger malditofmassspectrometrydatabaseforidentificationandclassificationofhighlypathogenicbacteria |