Asymptotic behaviour of solutions for porous medium equation with periodic absorption
This paper is concerned with porous medium equation with periodic absorption. We are interested in the discussion of asymptotic behaviour of solutions of the first boundary value problem for the equation. In contrast to the equation without sources, we show that the solutions may not decay but may b...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2001-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171201003581 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with porous medium equation with periodic absorption. We are interested in the discussion of asymptotic behaviour of solutions of the first boundary value problem for the equation. In contrast to the equation without sources, we show that the solutions may not decay but may be attracted into any small neighborhood of the set of all nontrivial periodic solutions, as time tends to infinity. As a direct consequence, the null periodic solution is unstable. We have presented an accurate condition on the sources for solutions to have such a property. Whereas in other cases of the sources, the solutions might decay with power speed, which implies that the null periodic solution is stable. |
---|---|
ISSN: | 0161-1712 1687-0425 |