Ranked solutions of the matric equation A1X1=A2X2
Let GF(pz) denote the finite field of pz elements. Let A1 be s×m of rank r1 and A2 be s×n of rank r2 with elements from GF(pz). In this paper, formulas are given for finding the number of X1,X2 over GF(pz) which satisfy the matric equation A1X1=A2X2, where X1 is m×t of rank k1, and X2 is n×t of rank...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1980-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S016117128000021X |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let GF(pz) denote the finite field of pz elements. Let A1 be s×m of rank r1 and A2 be s×n of rank r2 with elements from GF(pz). In this paper, formulas are given for finding the number of X1,X2 over GF(pz) which satisfy the matric equation A1X1=A2X2, where X1 is m×t of rank k1, and X2 is n×t of rank k2. These results are then used to find the number of solutions X1,…,Xn, Y1,…,Ym, m,n>1, of the matric equation A1X1…Xn=A2Y1…Ym. |
---|---|
ISSN: | 0161-1712 1687-0425 |