The Impact of Spatial Dynamic Error on the Assimilation of Soil Moisture Retrieval Products

Soil moisture is a key factor affecting the exchange of heat and water between the land and the atmosphere. Land data assimilation (LDA) methods that leverage the strengths of both models and observations can generate more accurate initial conditions. However, soil moisture exhibits significant spat...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuesong Bai, Zhengkun Qin, Juan Li, Shupeng Zhang, Lili Wang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/2/239
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil moisture is a key factor affecting the exchange of heat and water between the land and the atmosphere. Land data assimilation (LDA) methods that leverage the strengths of both models and observations can generate more accurate initial conditions. However, soil moisture exhibits significant spatial heterogeneity, implying strong local characteristics for both observational and background errors. To elucidate the impact of error localization on LDA, we constructed a land data assimilation system (LDAS) suitable for the Common Land Model (CoLM), based on the simplified extended Kalman filter (SEKF) method. Through practical assimilation experiments using soil moisture retrieval products from the Soil Moisture Active Passive (SMAP) and Fenyun-3D (FY3D) satellites, we investigated the influence of spatial static and dynamic observational and background errors on LDA. The results indicate that by incorporating dynamic errors that account for the spatial heterogeneity of soil, LDAS can adaptively absorb observational information, thereby significantly enhancing assimilation impact and subsequent model forecast accuracy. Compared to experiments applying static errors, dynamic errors increased the spatial correlation coefficients by 17.4% and reduced the root mean square error (RMSE) by 11.2%. The results clearly demonstrate that for soil variable assimilation studies with strong spatial heterogeneity, progressively refined dynamic error estimation is a crucial direction for improving land surface assimilation performance.
ISSN:2072-4292