A Note on the Solutions of Some Nonlinear Equations Arising in Third-Grade Fluid Flows: An Exact Approach
In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equatio...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2014/109128 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this communication, we utilize some basic symmetry
reductions to transform the governing nonlinear partial differential
equations arising in the study of third-grade fluid flows into ordinary
differential equations. We obtain some simple closed-form steady-state
solutions of these reduced equations. Our solutions are valid for the whole
domain [0,∞) and also satisfy the physical boundary conditions. We
also present the numerical solutions for some of the underlying equations.
The graphs corresponding to the essential physical parameters of the flow
are presented and discussed. |
---|---|
ISSN: | 2356-6140 1537-744X |