Winding topology of multifold exceptional points

Despite their ubiquity, a systematic classification of multifold exceptional points, n-fold spectral degeneracies (EPns), remains a significant unsolved problem. In this article, we characterize the Abelian eigenvalue topology of generic EPns and symmetry-protected EPns for arbitrary n. The former a...

Full description

Saved in:
Bibliographic Details
Main Authors: Tsuneya Yoshida, J. Lukas K. König, Lukas Rødland, Emil J. Bergholtz, Marcus Stålhammar
Format: Article
Language:English
Published: American Physical Society 2025-01-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.7.L012021
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832587192006868992
author Tsuneya Yoshida
J. Lukas K. König
Lukas Rødland
Emil J. Bergholtz
Marcus Stålhammar
author_facet Tsuneya Yoshida
J. Lukas K. König
Lukas Rødland
Emil J. Bergholtz
Marcus Stålhammar
author_sort Tsuneya Yoshida
collection DOAJ
description Despite their ubiquity, a systematic classification of multifold exceptional points, n-fold spectral degeneracies (EPns), remains a significant unsolved problem. In this article, we characterize the Abelian eigenvalue topology of generic EPns and symmetry-protected EPns for arbitrary n. The former and the latter emerge in (2n−2)- and (n−1)-dimensional parameter spaces, respectively. By introducing topological invariants called resultant winding numbers, we elucidate that these EPns are stable due to topology of a map from a base space (momentum or parameter space) to a sphere defined by resultants. In a D-dimensional parameter space (D≥c), the resultant winding numbers topologically characterize (D−c)-dimensional manifolds of generic (symmetry-protected) EPns, whose codimension is c=2n−2 (c=n−1). Our framework implies fundamental doubling theorems for both generic EPns and symmetry-protected EPns in n-band models.
format Article
id doaj-art-08b6b91b80764be1a68ff53c295caa7d
institution Kabale University
issn 2643-1564
language English
publishDate 2025-01-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj-art-08b6b91b80764be1a68ff53c295caa7d2025-01-24T15:05:11ZengAmerican Physical SocietyPhysical Review Research2643-15642025-01-0171L01202110.1103/PhysRevResearch.7.L012021Winding topology of multifold exceptional pointsTsuneya YoshidaJ. Lukas K. KönigLukas RødlandEmil J. BergholtzMarcus StålhammarDespite their ubiquity, a systematic classification of multifold exceptional points, n-fold spectral degeneracies (EPns), remains a significant unsolved problem. In this article, we characterize the Abelian eigenvalue topology of generic EPns and symmetry-protected EPns for arbitrary n. The former and the latter emerge in (2n−2)- and (n−1)-dimensional parameter spaces, respectively. By introducing topological invariants called resultant winding numbers, we elucidate that these EPns are stable due to topology of a map from a base space (momentum or parameter space) to a sphere defined by resultants. In a D-dimensional parameter space (D≥c), the resultant winding numbers topologically characterize (D−c)-dimensional manifolds of generic (symmetry-protected) EPns, whose codimension is c=2n−2 (c=n−1). Our framework implies fundamental doubling theorems for both generic EPns and symmetry-protected EPns in n-band models.http://doi.org/10.1103/PhysRevResearch.7.L012021
spellingShingle Tsuneya Yoshida
J. Lukas K. König
Lukas Rødland
Emil J. Bergholtz
Marcus Stålhammar
Winding topology of multifold exceptional points
Physical Review Research
title Winding topology of multifold exceptional points
title_full Winding topology of multifold exceptional points
title_fullStr Winding topology of multifold exceptional points
title_full_unstemmed Winding topology of multifold exceptional points
title_short Winding topology of multifold exceptional points
title_sort winding topology of multifold exceptional points
url http://doi.org/10.1103/PhysRevResearch.7.L012021
work_keys_str_mv AT tsuneyayoshida windingtopologyofmultifoldexceptionalpoints
AT jlukaskkonig windingtopologyofmultifoldexceptionalpoints
AT lukasrødland windingtopologyofmultifoldexceptionalpoints
AT emiljbergholtz windingtopologyofmultifoldexceptionalpoints
AT marcusstalhammar windingtopologyofmultifoldexceptionalpoints