Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

The two-dimensional angular resolution limit (ARL) of elevation and azimuth for MIMO radar with ultrawideband (UWB) noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statis...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoli Zhou, Hongqiang Wang, Yongqiang Cheng, Yuliang Qin, Haowen Chen
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2015/906313
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The two-dimensional angular resolution limit (ARL) of elevation and azimuth for MIMO radar with ultrawideband (UWB) noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs) of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT) with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB). Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR), and parameters of target (i.e., radar cross section (RCS) and direction), are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.
ISSN:1687-5869
1687-5877