De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield

Abstract Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuxing Dong, Wenping Wei, Mengfan Li, Tao Qian, Jiayun Xu, Xiaohe Chu, Bang-Ce Ye
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:Bioresources and Bioprocessing
Subjects:
Online Access:https://doi.org/10.1186/s40643-024-00825-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids. We designed a kaempferol biosynthetic pathway by integrating multiple-copy fusion enzyme expression modules, F3H-(GGGGS)2-FLS, into the genome with an optimized linker (GGGGS)2 to enhance kaempferol production from naringenin. To synthesize quercetin de novo, we introduced the FMOCPR gene into the kaempferol-synthesizing strain using the optimized pFBAin promoter. Notably, increasing glucose concentration effectively boosted the production of both flavonoids. Our results demonstrated kaempferol and quercetin titers reaching 194.30 ± 7.69 and 278.92 ± 11.58 mg/L, respectively, in shake-flask cultures. These findings suggest that Y. lipolytica is a promising platform for the efficient production of flavonoid-derived products.
ISSN:2197-4365