Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators
This paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters D0+α1φp1D0+β1ut+λft,ut,vt=0,0<t<1,D0+α2φp2D0+β2vt+μgt,ut,vt=0,0<t<1,u0=u1=u′0=u′1=0,D0+β1u0=0,D0+β1u1=b1D0+β1uη1,v0=v1=v′0=v′1=0,D0+β2v0=0,D0+β2v1=b2D0+β2vη2, where αi∈1,...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2020/9563791 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters D0+α1φp1D0+β1ut+λft,ut,vt=0,0<t<1,D0+α2φp2D0+β2vt+μgt,ut,vt=0,0<t<1,u0=u1=u′0=u′1=0,D0+β1u0=0,D0+β1u1=b1D0+β1uη1,v0=v1=v′0=v′1=0,D0+β2v0=0,D0+β2v1=b2D0+β2vη2, where αi∈1,2, βi∈3,4, D0+αi and D0+βi are the standard Riemann-Liouville derivatives, φpis=spi−2s,pi>1, φpi−1=φqi, 1/pi+1/qi=1,ηi∈0,1,bi∈0,ηi1−αi/pi−1, i=1,2, and f,g∈C0,1×0,+∞×0,+∞,0,+∞ and λ and μ are two positive parameters. We obtain the existence and uniqueness of positive solutions depending on parameters for the system by utilizing a recent fixed point theorem. Furthermore, an example is present to illustrate our main result. |
---|---|
ISSN: | 1687-9120 1687-9139 |