Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators

This paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters D0+α1φp1D0+β1ut+λft,ut,vt=0,0<t<1,D0+α2φp2D0+β2vt+μgt,ut,vt=0,0<t<1,u0=u1=u′0=u′1=0,D0+β1u0=0,D0+β1u1=b1D0+β1uη1,v0=v1=v′0=v′1=0,D0+β2v0=0,D0+β2v1=b2D0+β2vη2, where αi∈1,...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen Yang, Xiaolin Zhu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2020/9563791
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters D0+α1φp1D0+β1ut+λft,ut,vt=0,0<t<1,D0+α2φp2D0+β2vt+μgt,ut,vt=0,0<t<1,u0=u1=u′0=u′1=0,D0+β1u0=0,D0+β1u1=b1D0+β1uη1,v0=v1=v′0=v′1=0,D0+β2v0=0,D0+β2v1=b2D0+β2vη2, where αi∈1,2, βi∈3,4, D0+αi and D0+βi are the standard Riemann-Liouville derivatives, φpis=spi−2s,pi>1, φpi−1=φqi, 1/pi+1/qi=1,ηi∈0,1,bi∈0,ηi1−αi/pi−1, i=1,2, and f,g∈C0,1×0,+∞×0,+∞,0,+∞ and λ and μ are two positive parameters. We obtain the existence and uniqueness of positive solutions depending on parameters for the system by utilizing a recent fixed point theorem. Furthermore, an example is present to illustrate our main result.
ISSN:1687-9120
1687-9139